Franco Maloberti

Layout of Analog
CMOS
Integrated Circuit
Part 3
Passive components: Resistors, Capacitors
Outline

- Introduction
- Process and Overview Topics
- Transistors and Basic Cells Layout
- Passive components: Resistors, Capacitors
- System level Mixed-signal Layout
Integrated Capacitors

Capacitors in IC are parallel plate capacitors

\[C = \frac{\varepsilon_0 \varepsilon_r \ WL}{t_{ox}} \]

No fringing effect

<table>
<thead>
<tr>
<th>Material</th>
<th>Rel. Permittivity</th>
<th>Diel. Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂ Dry Oxide</td>
<td>3.9</td>
<td>11 V/nm</td>
</tr>
<tr>
<td>SiO₂ Plasma</td>
<td>4.9</td>
<td>3-6 V/nm</td>
</tr>
<tr>
<td>Si₃N₄ LPCVD</td>
<td>6-7</td>
<td>10 V/nm</td>
</tr>
<tr>
<td>Si₃N₄ Plasma</td>
<td>6-9</td>
<td>5 V/nm</td>
</tr>
</tbody>
</table>

F. Maloberti - *Layout of Analog CMOS IC*
Types of Integrated Capacitors

- Poly-poly
- Sandwich
- Lateral plates (flux capacitor)
- Poly-diffusion
- Poly-channel
Features of Integrated Capacitors

Electrodes: metal; polysilicon; diffusion

Insulator: silicon oxide; polysilicon oxide; CVD oxide

\[C = \frac{\varepsilon_0 \varepsilon_r}{t_{ox}} WL \]

\[\left(\frac{\Delta C}{C} \right)^2 = \left(\frac{\Delta \varepsilon_r}{\varepsilon_r} \right)^2 + \left(\frac{\Delta t_{ox}}{t_{ox}} \right)^2 + \left(\frac{\Delta L}{L} \right)^2 + \left(\frac{\Delta W}{W} \right)^2 \]

F. Maloberti - Layout of Analog CMOS IC
Factor affecting accuracy

\[
\left(\frac{\Delta \varepsilon_r}{\varepsilon_r} \right) \quad \text{• Oxide damage}
\]

\[
\left(\frac{\Delta t_{\text{ox}}}{t_{\text{ox}}} \right) \quad \text{• Grow rate}
\]

\[
\left(\frac{\Delta L}{L} \right) ; \left(\frac{\Delta W}{W} \right) \quad \text{• Etching}
\]

- Impurities
- Bias condition
- Bias history (for CVD)
- Stress
- Temperature
- Poly grain size
- Etching
- Alignment
To achieve good matching:

- Use of unity capacitors connected in parallel
- Use $W = L$ fairly large

F. Maloberti - *Layout of Analog CMOS IC*
Flux Capacitor Layout

- Use of the same metal layer
- Exploit the lateral flux
- The parasitic capacitance plate-substrate is low because the metal sits on thick oxide
- Use thick metal layers
- Maximize the perimeter (use of fractals)
- Very good matching!
Common Centroid Structures

\[C_2 = C_1 \\
C_3 = 2C_1 \\
C_4 = 4C_1 \\
C_5 = 8C_1 \]
Matching of Capacitors

Matching accuracy is better than matched resistors, because:

- \(\frac{\Delta \varepsilon_r}{\varepsilon_r} \ll \frac{\Delta \rho}{\rho} \)

- \(\frac{\Delta W}{W}_{\text{cap}} < \frac{\Delta W}{W}_{\text{res}} \) (because the capacitors are square)

- \(\frac{\Delta t_{\text{ox}}}{t_{\text{ox}}} < \frac{\Delta x_j}{x_j} \)
W' = W - 2x
L' = L - 2x

Effective area:

A' = W'L' = WL - 2(L + W)x
A' = A - Px

The undercut effect gives the same proportional reduction if the perimeter-area ratio is kept constant.
Matched Capacitors: Exercise

Layout the following three capacitors

- $C_1 = 0.95\, \text{pF}$
- $C_2 = 1.24\, \text{pF}$
- $C_3 = 1.37\, \text{pF}$

The absolute accuracy is not important. What matters is the capacitance ratios.
Fringing Effect

- Equation: \(C = \frac{\varepsilon_0 \varepsilon_r}{t_{ox}} WL \) is an approximation

\[C = \frac{\varepsilon_0 \varepsilon_r}{t_{ox}} (W - t_{ox})(L - t_{ox}) + C_{fring} \]

- Fringing depends on the boundary conditions
MOS Capacitors Features

<table>
<thead>
<tr>
<th>Type</th>
<th>t_{ox} nm</th>
<th>Accuracy %</th>
<th>Temperature Coefficient ppm/°C</th>
<th>Voltage Coefficient ppm/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>poly - diff.</td>
<td>15 - 20</td>
<td>7 - 14</td>
<td>20 - 50</td>
<td>60 - 300</td>
</tr>
<tr>
<td>poly I - poly II</td>
<td>15 - 25</td>
<td>6 - 12</td>
<td>20 - 50</td>
<td>40 - 200</td>
</tr>
<tr>
<td>metal - poly</td>
<td>500 - 700</td>
<td>6 - 12</td>
<td>50 - 100</td>
<td>40 - 200</td>
</tr>
<tr>
<td>metal - diff.</td>
<td>1200 - 1400</td>
<td>6 - 12</td>
<td>50 - 100</td>
<td>60 - 300</td>
</tr>
<tr>
<td>metal I - metal II</td>
<td>800 - 1200</td>
<td>6 - 12</td>
<td>50 - 100</td>
<td>40 - 200</td>
</tr>
</tbody>
</table>
Parasitic Capacitances

<table>
<thead>
<tr>
<th></th>
<th>diffusion</th>
<th>poly-poly or poly-metal</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C_{p,b}$</td>
<td>0.05C</td>
<td>0.02 C</td>
</tr>
<tr>
<td>$C_{p,t}$</td>
<td>0.01C</td>
<td>0.005 C</td>
</tr>
</tbody>
</table>

High impedance node connected to the top plate

F. Maloberti - *Layout of Analog CMOS IC*
Rules for Capacitor Matching

- Use identical geometries
- Use large unity capacitance (minimize fringing)
- Use common centroid arrangement
- Use dummy capacitors
- Use shielding
- Account for the connections’ contribution
- Don’t run connections over capacitor
- Place capacitor in low stress areas
- Place capacitors far from power devices
Integrated Capacitors

- Use unit capacitors
- Make bigger capacitors integer multiples of the unit capacitor
- Use common centroid layout to match capacitors
- Use multiple contacts to lower series resistance
A resistor is made of a strip of resistive layer.

\[
R = 2R_{\text{cont}} + \frac{L}{W} R^{\square}
\]

The endings resistance can be significant!
Diffused Resistances

a, b) diffusion

c) n-well (or p-well)

d) Pinched well
Polysilicon Resistances

Conductive layers can be used to shield the conductor-oxide-conductor structure.
Well or Pinched-well Resistors

- Well layers have a large specific resistance
 - but
 - They have a large voltage and temperature coefficient
 - They are weakly insulated from the surrounding
 - Layers close to the surface contribute to the conductivity
Large Value Resistors

In order to have large value resistors:

• Use of long strips (large L/W)
• Use of layers with high sheet resistance (bad performances)

Layout: rectangular “snake”

(!!)
Resistance at the corners
Current flows in different directions

DON’T USE IT IN PRECISE APPLICATIONS!
Prevent Current Leakage!

- N-Well
- Substrate bias
- n⁺ diffusion
- p⁺ diffusion

Prevents lateral leakage

F. Maloberti - *Layout of Analog CMOS IC*
Features of Resistors

<table>
<thead>
<tr>
<th>Type of layer</th>
<th>Sheet Resistance $\Omega/0$</th>
<th>Accuracy $%$</th>
<th>Temperature Coefficient $\text{ppm/}^\circ\text{C}$</th>
<th>Voltage Coefficient ppm/V</th>
</tr>
</thead>
<tbody>
<tr>
<td>n + diff</td>
<td>30 - 50</td>
<td>20 - 40</td>
<td>200 - 1K</td>
<td>50 - 300</td>
</tr>
<tr>
<td>p + diff</td>
<td>50 - 150</td>
<td>20 - 40</td>
<td>200 - 1K</td>
<td>50 - 300</td>
</tr>
<tr>
<td>n - well</td>
<td>2K - 4K</td>
<td>15 - 30</td>
<td>5K</td>
<td>10K</td>
</tr>
<tr>
<td>p - well</td>
<td>3K - 6K</td>
<td>15 - 30</td>
<td>5K</td>
<td>10K</td>
</tr>
<tr>
<td>pinched n - well</td>
<td>6K - 10K</td>
<td>25 - 40</td>
<td>10K</td>
<td>20K</td>
</tr>
<tr>
<td>pinched p - well</td>
<td>9K - 13K</td>
<td>25 - 40</td>
<td>10K</td>
<td>20K</td>
</tr>
<tr>
<td>first poly</td>
<td>20 - 40</td>
<td>25 - 40</td>
<td>500 - 1500</td>
<td>20 - 200</td>
</tr>
<tr>
<td>second poly</td>
<td>15 - 40</td>
<td>25 - 40</td>
<td>500 - 1500</td>
<td>20 - 200</td>
</tr>
</tbody>
</table>
Resistor’s Accuracy

\[R = \frac{L}{W} R_\square = \frac{L}{W} \cdot \frac{\bar{\rho}}{x_j} \]

If the parameters are statistically independent the standard deviation of the resistance is:

\[
\left(\frac{\Delta R}{R} \right)^2 = \left(\frac{\Delta L}{L} \right)^2 + \left(\frac{\Delta W}{W} \right)^2 + \left(\frac{\Delta \bar{\rho}}{\bar{\rho}} \right)^2 + \left(\frac{\Delta x_j}{x_j} \right)^2
\]

Since in general \(L >> W \)

F. Maloberti - *Layout of Analog CMOS IC*
Resistor’s Accuracy (cont.)

\[
\begin{pmatrix}
\frac{\Delta \rho}{\rho}
\end{pmatrix}
\]
for polysilicon resistors is larger than for diffused resistors.

(Polysilicon is composed of a conglomerate of independently oriented grain of crystalline silicon)

Accuracy:

Absolute accuracy is poor because of the large parameter drift.

Ratio (or matching) accuracy is better because it depends on the local variation of parameters.
Factor Affecting Accuracy

\[
\left(\frac{\Delta \rho}{\rho} \right)
\]

- Polysilicon grain size
- Doping dose
- Crystal defects
- Stress
- Temperature

\[
\left(\frac{\Delta L}{L}, \frac{\Delta W}{W} \right)
\]

- Etching
- Boundary
- Side diffusivity

\[
\left(\frac{\Delta x_j}{x_j} \right)
\]

- Implant dose
- Side diffusivity
- Deposition rate
Plastic packages cause a large pressure on the die (= 800 Atm.). It determines a variation of the resistivity. For <100> material the variation is unisotropic, so the minimum is get if the resistance have a 45° orientation.

Temperature:

Temperature gradient on the chip may produce thermal induced mismatch.

F. Maloberti - *Layout of Analog CMOS IC*
Effect of Etching

Wet etching: isotropic (undercut effect)
H_F for SiO$_2$; H_3PO$_4$ for Al
Δx for polysilicon may be 0.35 - 0.5 μm with standard deviation 0.02 μm.

Reactive ion etching (R.I.E.) (plasma etching associated to “bombardment”): unisotropic.
Δx for polysilicon is 0.2 μm with standard deviation 0.015 μm

Boundary:
The etching depends on the boundary conditions
Use of dummy strips

F. Maloberti - *Layout of Analog CMOS IC*
Side Diffusion

Contribution of Endings

F. Maloberti - *Layout of Analog CMOS IC*
Exercise: draw a 121212121212 connection and compare the two solutions
Exercise: draw a common centroid structure (12 elements per resistor)
Resistor Guidelines

For matching:
- Use of equal structures
- Not too narrow \((W = 10\, \text{mm})\)
- Interdigitize
- Thermal effect compensation
- \(45^\circ\) orientation (if stressed)

For good TC:
- Use of \(n^+\) or \(p^+\) layers
- Use of poly layers

For absolute value:
- Use of diffused layers
- Suitable endings
Simple Model

Field oxide T1 Poly T2 Deposited oxide (ILO)

Substrate

(A)

T1 R1 T2

C1 C2

SUBS

(B)

T1 R1 R2 T2

C1 C2 C3

SUBS

F. Maloberti - *Layout of Analog CMOS IC*
Metal Resistor

The sheet resistance of Al metallization is around 100 mΩ/□
Adjusting Resistor Values

Sliding contact: requires to change the contact mask only

Metal fuse and Poly-fuse

F. Maloberti - *Layout of Analog CMOS IC*
Use of Fuses To Adjust Resistors

(A)

F_1

4R_{lsb}

F_2

2R_{lsb}

F_3

R_{lsb}

Rx

(B)

F_1

R_{msb}

F_2

R_{msb}/2

F_3

R_{msb}/4

Rx

F. Maloberti - *Layout of Analog CMOS IC*
Rules for Resistor Matching

- Use the same material
- Identical geometry, same orientation
- Close proximity
- Interdigitate arrayed resistors
- Use dummy elements
- Place resistors in low stress area
- Place resistors away from power devices
- Use electrostatic shielding
- Use proper endings
Integrated Resistors

❖ Issue to remember
 ✷ Integrated resistors and features
 ✷ Resistor endings
 ✷ Make bigger resistors integer multiples of the unit resistor
 ✷ Finger two or more resistors for matching
 ✷ Do not snake a resistor; use metal to make turns
 ✷ Well under the resistor to shield from interference
 ✷ Substrate bias around the resistor