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Gallop in the linear theory

• Discussed many times before

• Skip it for now, but I will upload to the server 

for reference
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Thermal transient testing

The measured a(t) response function is 
characteristic to the package. 

The features of the chip + package + environment
structure can be extracted from it.

NID method

h(t) a(t)
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Step-response functions
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If we know the R
i
and ττττi values, we know the 

system.

characteristic values: R magnitude and τ time-constant

• for a chain of n RC stages:

characteristic values: set of Ri magnitudes and τi time-
constants

The form of the step-response function

• for a single RC stage:
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• for a distributed RC system:

If we know the R(ττττ) function, we know the 
distributed RC system.
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discrete set of Ri and τi values continuous R(τ) spectrum

characteristic: R(ττττ) ) ) ) time-constant spectrum:

Step-response functions
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Discrete RC stages              discrete set of R
i
and ττττi values

Distributed RC system        continuous R(ττττ) function

If we know the R(τ) function, we know the system.
R(ττττ) is called the time-constant spectrum.

Time-constant spectrum
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Practical problem

• The range of possible time-constant values in 

thermal systems spans over 5..6 decades of time

─ 100µs ..10ms range: semiconductor chip / die attach
─ 10ms ..50ms range: package structures beneath the 

chip

─ 50ms ..1 s range: further structures of the package

─ 1s ..10s range: package body

─ 10s ..10000s range: cooling assemblies

• Wide time-constant range ⇒ data acquisition 

problem during measurement/simulation: what is 

the optimal sampling rate?



4

7

Practical problem (cont.)

Solution: equidistant sampling on logarithmic time scale

Nothing can be seen below the 10s range

a(t)

t

Measured unit-step 

response of an MCM 

shown in linear time-

scale

8

Instead of t time we use z = ln(t) logarithmic time

Details in all time-constant ranges are seen

a(z)

z = ln(t)

Measured unit-step 

response of an MCM 

shown in linear time-

scale

Using logarithmic time-scale 
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• Switch to logarithmic time scale:

a(t) ⇒ a(z) where z = ln(t)

a(z) is called*
─ heating curve or
─ thermal impedance curve

• Zth curve

*Sometimes P⋅a(z) is called heating curve in the literature.

Step-response in log time

10

Step-response in log time

• Zth curve

• Use the chain rule !

• Using the z = ln(t)

transformation it can be 

proven that
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• Note, that da(z)/dz is in a form of a convolution 

integral:
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=• From a(z)   R(z) is obtained as:

Step-response in log time
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)(za Must be noise free, must have high time 

resolution (e.g. 200 points/decade)

)(zR False values with small magnitude can be present due 

to noise enhancement in the procedure. Negative 

values represent a transfer impedance.

Numerical deconvolution: Bayes-iteration (for driving 

point impedance only), frequency-domain inverse 

filtering (both for driving point and transfer impedances)

)(1 zwz
−⊗

Numerical derivation should be accurate: high order 

techniques yield better results. 

Danger of noise enhancement ⇒⇒⇒⇒ filtering ⇒⇒⇒⇒ loss of 

ultimate resolution in the time-constant spectrum

dz

d

Extract the time-constant spectrum
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• The time-constant spectrum gives hint for 

the time-domain behavior of the system for 

experts

• Time-constant spectra can be further 

processed and turned into other 

characteristic functions

• These functions are called structure 

functions

Using time-constant spectra
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Models of thermal impedances

heating or cooling 

curves

Network model of a thermal impedance: 

Normalized to 1W 

dissipation: thermal 

impedance curve

Evaluation: Interpretation of 
the impedance 

model: 

STRUCTURE 
FUNCTIONS

16

Structure functions 1

• Discretization of R(z)⇒ RC network model in Foster 
canonic form 
(instead of ∞ spectrum lines, 100..200 RC stages)

Ri=R(τi)

τi=exp(zi)

Ri

Ci=τi/Ri

• A discrete RC network model is extracted ⇒ name of the 
method: NID - network identification by deconvolution
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• The Foster model network is just a theoretical 

one, does not correspond to the physical 

structure of the thermal system: 

thermal capacitance exists towards the ambient 

(thermal “ground”) only

• The model network has to be converted into the 

Cauer canonic form:  

Structure functions 2

18

• Ronald Martin Foster 

• 1896 - 1998

• Wilhelm Cauer

• 1900 - 1945
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• The identified RC model network in the Cauer 

canonic form now corresponds to the physical 

structure, but

• This is called 

cumulative 

structure 

function

• it is very hard to interpret its “meaning”

• Its graphical 

representation

helps:

∑
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Structure functions 3
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∑
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The cumulative structure function is the map of the 
heat-conduction path:

Structure functions 4
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• The differential structure function is defined as the 
derivative of the cumulative thermal capacitance with 
respect to the cumulative thermal resistance

• K is proportional to the square of the cross sectional area 
of the heat flow path.

Σ
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==Σ

Differential structure functions

22

What do structure 

functions tell us and 

how?
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A hypothetic example 1

An ideal homogeneous  rod

Ideal heat-sink at Tamb

t

1W

P(t)

1D heat-flow

Rth_tot= L/(A·λ)

T(z)

z = ln t

24

Ideal heat-sink at Tamb

An ideal homogeneous  rod

∆L

∆L A

V = A·∆L1D heat-flow

Tamb

Cth = V·cv

Rth = ∆L/(A·λ)

A hypothetic example 2A hypothetic example 2
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This is the network model of the 
thermal impedance of the rod

Driving point

Ambient

A hypothetic example 3A hypothetic example 3

An ideal homogeneous  rod

Ideal heat-sink at Tamb

26

Rth_tot

Rth_tot

It is very easy to create 
the cumulative 
structure function:

y=x   - a straight line

∑
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Let us assume ∆L, A and material parameters
such, that all element values in the model are 1!
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There must be a 
singularity when we 
reach the ideal heat-
sink.

The location of the singularity gives 
the total thermal resistance of the 
structure.

A hypothetic example 4A hypothetic example 4
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Let us assume ∆L, A and material parameters
such, that all element values in the model are 1!
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A hypothetic example 5A hypothetic example 5

It is also very easy to create the differential 
structure function for this case. 

Again, we obtain a straight line:

y=1

28

What happens, if e.g. in a certain section of the structure 
model all capacitance values are equal to 2?
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A hypothetic example 6A hypothetic example 6
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What would such a change in the structure 
functions indicate?

It means either a
change in the 
material 

properties…

A hypothetic example 7A hypothetic example 7

30

What would such a change in the structure 
functions indicate?

… or a change in 
the geometry…or

both

A hypothetic example 8A hypothetic example 8
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What values can we read from the structure functions?

Cumulative structure function

∑
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Cth1 Cth2 Cth3

Cth1

Cth2

Cth3

Thermal capacitance 
values can be read

Rth1 Rth2 Rth3

Rth1 Rth2 Rth3

Partial thermal 
resistance values can 

be read

A hypothetic example 9A hypothetic example 9
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What values can we read from the structure functions?

Cumulative structure function

∑
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Differential structure function
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V1 V2 V3

V3/cv1

If material is known, 
volume can be 

identified. If material is known, cross-sectional 
area can be identified.

A1 A2 A1

K2 = A
2

2·cv2·λ2

K1 = A
2

1·cv1·λ1

If volume is known, volumetric 
thermal capacitance can be 

identified.
If cross-sectional area is known, material 

parameters (cv·λ) can be identified.

V2/cv2

V1/cv1

A hypothetic example 10A hypothetic example 10
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Cold-plate

Base

Chip

Die attach
Junction

Die attach: large Rth/Cth ratio

Base: small Rth/Cth ratio

Grease: large Rth/Cth ratio

Cold-plate: infinite Cth

Junction: is always in the origin

ΣR

ΣC
Cumulative structure function:

t

P(t) T(z)

z = ln t

We measure the thermal transient 
at the junction...

...and we convert it into the 
cumulative structure function:

Grease

1D heat-flow

Chip: small Rth/Cth ratio

• Structure functions: thermal capacitance vs. thermal 
resistance maps of the heat-flow path

Model of 1D flow: structure func.Model of 1D flow: structure func.

34

Base

Base

ΣR

Differential structure function:

Die attach

Die attach

Chip

Chip

Cold-plate: infinite Cth

Junction

Junction
ΣR

ΣC
Cumulative structure function:

Die attach 
interface 
thermal 
resistance

The heat-flow path can be 
well characterized e.g. by 
partial thermal resistance 
values

The RthDA value is derived 
entirely from the junction 
temperature transient. 

No thermocouples are 
needed.

Grease

Grease

Σ

Σ

∂
∂

=
R

C
K

• Structure functions: maps of the heat-flow path

Model of 1D flow: structure func.Model of 1D flow: structure func.
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DA testing with structure functions

• Structure functions: tools for structural analysis and 
comparison

Cold-plate

Base

Chip

Die attach
Junction

Grease

Base
Grease

Die attach

ΣR

ΣC

Chip

Reference device with good DA

Cold-plate

Base

Chip

Die attach
Junction

Grease

Unknown device with suspected  DA voids

ΣR

ΣC

Copy the reference 
structure function into 

this plot

This increase 
suggests DA 
voids

Identify its structure function: Identify its structure function:

36

• Structure functions: tools for structural analysis and 
comparison

Cold-plate

Base

Chip

Die attach
Junction

Grease

Reference device with good DA

Cold-plate

Base

Chip

Die attach
Junction

Grease

Unknown device with suspected  DA voids

Base

ΣR
Die attach

Chip

Junction Grease

Σ

Σ

∂
∂

=
R

C
K

ΣR
Die attach

Chip

Junction

Base

Grease

Σ

Σ

∂
∂

=
R

C
K

Copy the reference 
structure function into 

this plot

Shift of peak: Increased die 
attach thermal resistance 
indicates voids

DA testing with structure functionsDA testing with structure functions
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• Structure functions are direct models of one-
dimensional heat-flow 
─ longitudinal flow (like in case of a rod)

• Also, structure functions are direct models of 
"essentially" 1D heat-flow, such as
─ radial spreading in a disc (1D flow in polar coordinate 
system)

─ spherical spreading

─ conical spreading

─ etc.

• Structure functions are "reverse engineering tools": 
geometry/material parameters can be identified 
with them

Some conclusions

38

IDEAL HEAT-SINK

Some conclusions (cont.)Some conclusions (cont.)

• In many cases a complex heat-flow path can be 
partitioned into essentially 1D heat-flow path 
sections connected in series:
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• In case of complex, 3D streaming the derived 

model has to be considered as an equivalent 

physical structure providing the same thermal 

impedance as the original structure.

Some conclusions (cont.)Some conclusions (cont.)

40

Cth2

Cth1

Rth1 Rth2

Section 
corresponding 
to radial heat 
spreading in a 
disk/board

ΣΣ ⋅= RconstC

Some special properties

• For "ideal" cases structure functions can be given 

even by analytical formulae 

─ for a rod: 

─ for radial spreading in a disc of w thickness and λ
thermal conductivity:
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