
1

EuroCPS - SmartSSL
Milestone #3 Technical Documentation

Table of contents

1. Purpose and scope of this document ... 2

1.1. List of abbreviations .. 3

2. Introduction .. 4

3. System architecture ... 5

3.1. Network topology .. 5

3.2. Node architectures, interfaces, communication protocols.. 7

3.2.1. Dispatcher Unit .. 7

3.2.2. Pylon Unit and ancillary modules ... 8

3.2.3. External interfaces of the design units ... 11

4. Implementation details ... 12

4.1. Hardware components .. 12

4.1.1. CCU hardware ... 12

4.1.2. MSM hardware .. 13

4.1.3. SU hardware .. 15

4.1.4. LDCU hardware ... 15

4.1.5. DPS hardware ... 17

4.2. Software components ... 18

4.2.1. Low-level APIs ... 18

4.2.2. Yitran host API use cases .. 37

4.2.3. Application logic ... 43

4.2.4. Software tests .. 44

5. References .. 47

6. Appendix .. 48

2

1. Purpose and scope of this document

This document includes the technical documentation of deliverable items up to D3.1 as

defined in EuroCPS Deliverable D3.2.

3

1.1. List of abbreviations

API Application Programming Interface

CCU Central Computing Unit

DALI Digital Addressable Lighting Interface

DPS DALI Power Supply

DU Dispatcher Unit

if-CCU-LDCU Interface between the Central Computing Unit and the LED DAQ and Control Unit

if-CCU-MSM Interface between the Central Computing Unit and The Maintenance Subnetwork Modem

if-CCU-SU Interface between the Central Computing Unti and the Sensor Unit

if-DU-IN Interface between the Dispatcher Unit and the Internet

if-DU-MS Interface between the Dispatcher Unit and the Maintenance Subnetwork

if-LDCU-DPS Interface between the LED DAQ and Control Unit and the DALI Power Supply

if-PU-MS Interface between the Pylon Unit and the Maintenance Subnetwork

if-PU-SS Interface between the Pylon Unit and the Smart city Subnetwork

IN Internet

LED Light Emitting Diode

LDCU LED DAQ and Control Unit

MS Maintenance Subnetwork

MSM Maintenance Subnetwork Modem

NC Network Coordinator

OSI Open Systems Interconnection

PCB Printed Circuit Board

PLC Power Line Communication

POR Power On Reset

PPP Point-to-Point Protocol

PU Pylon Unit

RF Radio Frequency

RS Remote Station

SU Sensor Unit

SSL Solid State Lighting

4

2. Introduction

The problem of today’s high degree of “LEDification” of lighting installations is that it still
happens in a “retrofit” manner. Though luminaires designed for conventional light sources
(incandescent bulbs, CFLs, gas discharge lamps) are replaced by LED luminaires, their
physical operating environments (i.e. the mechanical supports, the power supply, and the
applied control system) remain untouched, therefore one cannot take full advantage of
applying LEDs. Even energy saving can be further increased with smart control of LEDs
considering the actual temperature and LED characteristics and maintenance costs could be
further reduced if more information about the LED luminaires and their physical environment
were available. The objectives are as follows:

● Renew LED based street-lighting solutions with improved/extended communications
(detection of human presence, improved adaptation to ambient conditions) especially
dedicated to small rural communities, where improved safety and significantly
reduced operating costs are key factors to justify investment into new street-lighting
installations. Due to the limited resources of smaller communities the option of
gradual introduction of new features in new lighting installations is also an important
aspect.

● Introduce the self-diagnostics and intelligent LED control functions implemented both
for street-lighting and for indoor solutions such as smart office lighting.

● Be a pilot implementation of self-identification in order to allow complete life cycle
traceability of every individual module – this allows charging recycling costs of the
product manufacturer. This is important to reduce the flood of cheap, low-quality
Asian products on the European market where the recycling costs are not included in
the price – providing an unfair market advantage to the manufacturers of such
products.

● Develop an intelligent LED driver which allows
○ advanced self-diagnostics functions for the entire LED luminaires through an

appropriate communications interface.
○ adjustment of the LEDs’ electrical operating point based on the actual

environmental temperature in order to provide extra energy saving (reducing
the current when efficiency increases due to the lower temperature) and
increased safety/reliability of operation (limiting the forward current at high
temperatures to protect the LEDs).

● Develop a central control unit for the luminaires with a sensor interface and
communications interface with an architecture inspired by the principles of the OSI
model, allowing high degree of independence of the physical medium available for
data transmission and providing flexibility in the actual communications protocol
being used; allowing street-lighting operators to tailor the smart LED luminaires to
their existing infrastructure or re-configuring (updating) the luminaires when the
infrastructure is upgraded.

5

3. System architecture

3.1. Network topology

As an answer to the arising needs the network topology depicted in Fig. 1 has been
proposed.

Fig. 1. The overall network topology with the nodes’ internal and external interfaces.

In this dual network topology, two physically independent networks are constructed. The
specialty of this topology is that the subnetworks share their nodes (Pylon Units, PUs) and
these nodes eventually establish a logical connection between the subnetworks in a
controllable manner. The roles of the subnetworks are the following:

● Maintenance subnetwork: It ensures remote access to the luminaires for a lighting
dispatcher. The first objective is to provide the lighting dispatcher with self-
diagnostics and identification information and make it possible to control the
operation of the luminaires. It is economically more favorable to exploit the already
installed infrastructure than introduce new ones, therefore, there are two possible
ways for the maintenance subnetwork’s physical layer implementation; wireless
communication or power line communication (PLC [1]).

● Smart city subnetwork: By implementing widely-used communication interfaces,
the PUs may be used to form subnetworks supporting smart-city applications.

As it may be seen in Fig. 1, the shared nodes implement two abstract interfaces
implementing additional private functionalities. The sensor interface is used to connect
sensors to the PUs. These sensors are used for data acquisition regarding the ambient
conditions (e.g. temperature). The LED interface implements the lower levels of control
services with regard to intelligent LED driving. All these interfaces follow the principles of the
OSI model. The uniqueness and flexibility of this system architecture lies in the fact that the
above mentioned interfaces are implemented by the same computation unit inside the PUs.
That means that the different interface protocol stacks may share their application layer (see
Fig. 2), which, as a result of the well-abstracted protocol structure, has a comprehensive
access to the system resources, no matter, what they may be, including low-level LED driver
protocols, sensors, and networks. The first demonstrational realization of the above

6

described system utilizes well-known technologies regarding physical layers. However, the
arising new technologies may inspire new services with special demands that today’s
communication standards cannot cope with, justifying and necessitating the layered protocol
structure.

Fig. 2. Protocol stacks with shared application layer implemented in the PUs.

The smart city subnetwork is primarily intended to support future services. Besides, the
future-proof nature of the maintenance subnetwork is also ensured by the component
referred to as dispatcher unit in Fig. 1. This entity is responsible for managing the
maintenance subnetwork and concentrating its data traffic from the viewpoint of a higher
level application playing the role of the lighting dispatcher host. The main objective of this
host application is to facilitate a link to the Internet. This connection widens the range of
possible services even further in the direction of web-based and cloud-based applications
and services.
By connecting the smart lighting system to the Internet, our proposed solution may become
part of the Internet of Things. Allowing arbitrary sensor data measured in the pylon units to
accumulate in a cloud-based database can open new horizons in smart city applications.
Accessing these measurement data and controlling the smart lighting network using a web-
based application allows:

● Supporting weather forecasting services. Accumulating temperature and relative
humidity measurements coming from sensors built-in the luminaires may provide fine
grained information regarding local weather conditions. The acquired local weather
data may be used to supplement weather forecasting algorithms.

● The wireless communication ability of each pylon unit enables providing support for
traffic management. Smart vehicles may connect to the smart city subnetwork of the
proposed solution to acquire location information of other connected vehicles.
Autonomously driven vehicles may share location information in order to avoid
collisions. The smart city subnetwork may also be used to dismiss current social
navigation applications such as Waze [2].

● The smart city subnetwork of the pylon units may be used to support navigation
applications in finding free parking slots. The pylon units may contain sensors that
track parking place occupation and these data may be accessed from navigation
applications using the Internet.

● Proximity sensors built-in to the luminaires may sense pedestrian presence and may
be used for autonomous dimming and dynamic power management of the smart
lighting system. According to the proximity sensor data, power consumption may be

7

reduced dramatically by powering off luminaires where no pedestrian activity can be
detected.

● The smart city subnetwork of the lighting fixtures may be used as global positioning
beacons supporting and extending current GPS navigation applications. UAVs such
as drones may use this network as navigation beacons to supplement orientation in
densely populated urban or covered areas where GPS positioning is not available or
not accurate.

Although the maintenance subnetwork and the smart system subnetwork are referred to as
two distinct interconnection media with their unique service sets and protocol stacks, the
demonstrational implementation defines the same services for both of them. That means
that the “smart city services” demonstrated by this realization are practically identical to
those available on the maintenance subnetwork. However, their physical layers significantly
differ from each other. The maintenance subnetwork applies PLC, while the smart system
subnetwork utilizes WiFi. In an envisioned future realization, the two subnetworks
significantly differ in the services they provide. In this case, the security and authorization
issues arising because of the combined private/public nature of the services are
concentrated into the application layer implemented by the pylon units.
Another difference between the envisioned system architecture and the demonstrational one
is that in the latter one, the smart city subnetwork is a virtual network, established by point-
to-point links between the external users and the pylon units. The access to other pylon units
is indirectly provided by the maintenance subnetwork (see Fig. 3). In a real-life future
application, the smart city subnetwork presumably has to cope with more frequently and
progressively changing requirements (e.g. bandwidth, data volume, etc.), therefore, the
physical-level separation seems to be justified, even if this solution demands more
complicated software and hardware resources and solutions.

Fig. 3. The smart city subnetwork is a virtual one, physically realized by the maintenance subnetwork resources.

3.2. Node architectures, interfaces, communication protocols

3.2.1. Dispatcher Unit

As may be seen in Fig. 1, the maintenance subnetwork is formed by multiple Pylon Units

(PU) and a single Dispatcher Unit (DU) interconnected in a tree topology. The DU represents

8

the root of this network, through which the whole maintenance subnetwork has access to the

Internet. Accordingly, the DU has two external interfaces:

● if-DU-IN: Through this interface, the DU may connect to the internet (IN).

● if-DU-MS: Through this interface, the DU may connect to the leaves of the

maintenance subnetwork (MS).

The details of the external interfaces are presented in Section 3.2.3.

The DU is comprised of two submodules, namely the Central Computing Unit (CCU) and the

Maintenance Subnetwork Modem (MSM) (see Fig. 4).

Fig. 4. The internal structure and interfaces of the DU.

The CCU implements the application level of the maintenance subnetwork communication

protocol stack and the system level application logic, while the MSM implements the network

layer, data link layer and physical layer of the maintenance subnetwork communication

protocol stack. The DU includes a single internal interface:

● if-CCU-MSM: This interface realizes the communication between two layers of the

maintenance subnetwork protocol stack. This abstraction is needed because the

application level and the lower levels (from network level down to PHY) of this

protocol stack are implemented by two physically separated hardware units (see the

details in Section 4.1.). The network level services (thus indirectly all lower level

services) of the MSM are accessible for the application level through a UART-based

link defined in Appendix A.

3.2.2. Pylon Unit and ancillary modules

The hardware structure of the PU is similar to the DUs structure. It consists of a CCU and an

MSM. It implements a communication interface, through which external devices may be

connected to it (smart city subnetwork interface, if-PU-SS), and another interface making it

possible for the PU to connect to the maintenance subnetwork as a leaf (if-PU-MS). Fig. 5

shows the internal structure and interfaces of the PU.

9

Fig. 5. The submodules and interfaces of the PU and the ancillary devices providing it with housekeeping data.

Just as the DU, the PU is also connected to the maintenance subnetwork through an MSM:

● if-CCU-MSM: From functional point of view, this interface is equivalent to if-CCU-

MSM in the DU: It forms a link between the application level logic implemented by the

CCU and the network level implemented by the MSM. However, the application level

logic implemented by the CCU is different, because of the different roles of the

design units in the maintenance subnetwork. The DU is a root, while the PUs are

leaves of the tree-like network.

The CCU of the PU implements two additional communication interfaces through which

ancillary modules may be connected to it:

● if-CCU-LDCU: Interface between the CCU and the LED DAQ and Control Unit

(LDCU).

● if-CCU-SU: Interface between the CCU and the Sensor Unit (SU).

10

The LDCU is able to control the luminance of the LED strings making intelligent

optimizations regarding power consumption possible. Additionally, the LDCU measures the

states of the LED strings and provides the CCU with the readings through this interface. if-

CCU-LDCU is based on UART. The link speed is 9600 bps, the format is 8N1. The link

utilizes the packet encapsulation method defined by PPP. Fig. 6 shows the frame structure

applied.

Fig. 6. The frame structure used between the CCU and the LDCU.

The ‘start/stop frame flag’ is defined as 0x7E. When this byte occurs in the payload data

(DATA), an ESC character (0x7D) is inserted before it and (0x20 XOR DATA) is inserted into

the payload. The ESC character itself is escaped in the same way. Fig. 7 shows the payload

structure.

Fig. 7. The payload of a PPP frame between the CCU and the LDCU.

The payload of the PPP frame includes the following fields:

● Function

○ Query: 0x01; The CCU sends a query to the LDCU.

○ Command: 0x09; The CCU sends a command or data to the LDCU.

○ Response: 0x19; The LDCU sends data back to the CCU.

● Address: The address of the register to read/write. In case of

acknowledgement, ‘connection OK’, and error messages, it is set to 0xFF.

○ 0x00: 1-byte DALI luminous power (logarithmic)

○ 0x01: 1-byte DALI fade speed.

○ 0x02...0x07: reserved for future use

○ 0x08; 0x09: U0L; U0H: Voltage of the first LED string * 10 in Volts.

○ 0x0A; 0x0B: I0L; I0H: Current of the first LED string in mAs.

○ 0x0C; 0x0D: U1L; U1H: Voltage of the second LED string * 10 in

Volts.

○ 0x0E; 0x0F: I1L; I1H: Current of the second LED string in mAs.

○ 0x10; 0x11: U2L; U2H: Voltage of the third LED string * 10 in Volts.

○ 0x12; 0x13: I2L; I2H: Current of the third LED string in mAs.

11

○ 0x14; 0x15: U3L; U3H: Voltage of the fourth LED string * 10 in Volts.

○ 0x16; 0x17: I3L; I3H: Current of the fourth LED string in mAs.

● Checksum: 8-bit checksum covering the ‘function’, the ‘address’, the ‘data

length’, and the ‘data’ fields.

● Data length: The number of bytes sent in the ‘data’ field of the payload.

● Data: the data itself. If address is 0xFF, the data field contains

acknowledgement, ‘connection OK’, or error messages:

○ 0xF0: LDCU is connected

○ 0xF1: command acknowledged

○ 0xF2: invalid data (e.g. DALI luminous power greater than 254)

○ 0xF3: invalid address

○ 0xF4: invalid command

○ 0xF5: checksum error

The LED string luminances are indirectly controlled by the LDCU through a DALI-capable

Power Supply (DPS). if-LDCU-DPS implements a minimal subset of the DALI protocol [3].

This implementation is capable of adjusting LED string luminances and fading

characteristics.

The Sensor Unit (SU) measures the ambient temperature and humidity and provides the

CCU with the readings through the if-CCU-SU interface. It is a standard I2C link

implemented based on the sensor specification (see Section 4.1.3.).

3.2.3. External interfaces of the design units

3.2.3.1. Internet connection of the DU

The DU is able to connect to the Internet using the TCP/IP protocol stack, which is a part of

the Linux operation system running on the DU. WiFi is used as physical layer protocol.

3.2.3.2. Smart city subnetwork interface of the PU

The PU is able to connect to external devices using the TCP/IP protocol stack, which is a

part of the Linux operation system running on the PU. WiFi is used as physical layer

protocol.

3.2.3.3. Maintenance subnetwork

The maintenance subnetwork is a Power Line Communication (PLC) network, which makes

it possible to use the already installed power lines for communication purposes. The MSM’s

network layer (see the description of the applied Yitran IT700 modem in Section 4.1.2.) is

designed to create a network with a tree type topology, allowing efficient connectivity

between all nodes in the network. The tree consists of a Network Coordinator (NC) and

multiple Remote Stations (RSs).

● NC: It functions as the concentrator of the network. Once a network is created, it

assigns a network ID to the NC. The node ID of the NC is 1. As a concentrator of the

network, the NC is the root of the tree. The network topology is derived from the NC’s

tables. In our application, the DU represents the NC.

12

● RS: The RS is a general name for all nodes in the tree, which are not the root, i.e.

body nodes and leaves. An RS can function as both an initiating as well as a

repeater and maintains both functions, or may be one or the other. In our application,

the PUs represent the RSs.

Fig. 8 shows an example for the PLC network topology.

Fig. 8. Exemplary PLC network topology.

In our application, the exact structure of the PLC network is slightly simpler, because there

are no repeaters. All RSs (PUs) connect directly to the NC (DU) as leaves (see Fig. 9).

Fig. 9. PLC network topology in our application.

4. Implementation details

4.1. Hardware components

4.1.1. CCU hardware

The central data processing tasks of the PUs and the DU are implemented by Intel Edison

single board computers. Intel Edison is an ultra-small computing platform designed for

industrial IoT applications [4], [5]. The CCU is comprised of an Intel® Atom™ SoC dual-core

CPU, 1 GB DDR and 4 GB flash memory, an integrated WiFi, Bluetooth LE, and a 70-pin

connector to attach shield-like “blocks” which can be stacked on top of each other. It’s low

power and small footprint make it ideal for projects that need a lot of processing power, but

don’t have the ability to be near a larger power source or have a large footprint. Fig. 10

shows the Intel Edison compute module. For more technical details see Appendix B.

13

Fig. 10. The Intel Edison Compute module.

Multiple different breakout boards were developed for the Intel Edison compute module.

Because of its small form factor, CCU uses the Intel Edison Mini Breaout Kit (see Fig. 11).

For more technical details see Appendix C. For pin configurations see Appendix H.

Fig. 11. The Intel Edison compute module and the Mini Breakout Kit.

The Intel Edison compute module runs a Yocto Linux distribution named Poky as its

operating system. The Poky reference distribution is a modern, fully-fledged Linux allowing

to run user applications connected to the Internet. User applications may be developed in

several languages and using different development frameworks that are built in the system.

One can create user applications with the following software frameworks, IDEs and

languages:

● Intel® XDK IoT Edition

● NodeJS – Javascript

● Arduino IDE

○ Arduino language

● Intel® System Studio IoT Edition

○ C/C++ with MRAA [REFMRAA] and UPM [REF9fromPaper] libraries to

control GPIO interfaces with high level APIs.

● MRA and UPM with Python bindings

● MRA and UPM with Java bindings

4.1.2. MSM hardware

The MSM is realized by the IT700 PLC modem in conjunction with the so-called Plug-In

Module (PIM) manufactured by Yitran (see Fig. 12). IT700 is a highly integrated System-on-

Chip (SoC) power-line communication modem. It incorporates Yitran’s extremely reliable

14

physical layer, high performance data link layer and Yitran Network Layer (Y-Net) protocol.

An integrated microcontroller with extended 8051 core, 256 KB flash memory, 16 KB RAM,

and 24 general purpose I/Os implements the protocol stack and offers the required flexibility

to implement various protocols and applications. The microcontroller’s UART interface

provides the connection to an external host and application controller.

Fig. 12. The YITRAN PIM.

The IT700 modem core uses Yitran’s patented Differential Code Shift Keying (DCSK)

advanced spread spectrum modulation technique. DCSK enables extremely robust

communication over existing electrical wiring with data rates up to 7.5 Kbps. In addition to

the inherent interference immunity provided by DCSK modulation, the device utilizes several

mechanisms for enhanced communication robustness, such as a patented forward short-

block soft-decoding error-correction algorithm and special synchronization algorithms.

The integrated Analog Frontend provides differential inputs and line driver outputs to connect

via an external line filter and coupler to the power transmission lines. An integrated PLL

circuit allows the operation of the IT700 with a choice of different crystal oscillators. An

integrated POR circuitry eliminates the need for any external reset components and provides

an autonomous, safe power-up and power-down reset to the chip. The integrated 1.8V

regulator allows the IT700 to operate from a single 3.3V supply voltage.

The IT700 complies with worldwide regulations (FCC part 15, ARIB, and CENELEC bands)

and is an ideal solution for a variety of “No New Wires” narrowband PLC applications.

The IT700 is available in two versions:

● The Protocol Control Architecture version has Yitran’s Y-Net network layer

protocol pre-programmed into the 8051 microcontroller’s flash memory. A UART

interface and a simple command language provide seamless connection to an

external host controller and simplify application development. In this version the user

has no access to the microcontroller’s unused memory space, peripheral functions

and general purpose I/Os.

● The Open Solution Architecture version allows you to utilize the IT700

microcontroller’s peripheral functions, such as timers, interrupts, communication

interfaces, A/D, spare memory resources, and general purpose I/Os to implement

your own application code, thereby eliminating the requirement for an external host

controller. An API enables the easy integration of your application code with Yitran’s

network layer code.

15

Our application uses the Protocol Control Architecture version of IT700 to implement

application logic.

4.1.3. SU hardware

SU functionalities are implemented by the TH02 sensor module manufactured by HopeRF

Electronic (see Fig. 13). This monolithic CMOS IC integrates temperature and humidity

sensor elements, an A/D converter, signal processing, calibration data, and an I2C host

interface. The patented use of industry-standard low-K polymeric dielectrics for sensign

humidity enables the construction of a low-power, monolithic CMOS sensor IC with low drift

and hysteresis and excellent long-term stability.

Fig. 13. TH02 temperature and humidity sensor.

Both the temperature and humidity sensors are factory-calibrated and the calibration data

are stored in the on-chip non-volatile memory. This ensures that the sensors are fully

interchangable, with no recalibration or software changes required. For more technical

details see Appendix D.

4.1.4. LDCU hardware

The LDCU is realized by an application-specific PCB including the following components:

● power supply modules

● voltage and current measurement and A/D converter circuits for LED string voltages

and currents

● a microcontroller unit managing all the LDCU tasks as follows

○ the LCDU side of the if-CCU-LDCU interface

○ DALI master

○ DC/DC converter control

○ LED string measurement tasks

● level shifter circuitry for the Intel Edison compute module

Fig. 14 shows the detailed schematic of the LDCU module while Fig 15 shows its PCB

layout. The LDCU PCB carries a set of level shifter circuits too, which are not directly related

to the LDCU functionalities, however, the are necessary to connect the 1.8V voltage level

domain of Intel Edison to the 3.3 V voltage level domain of the TH02 sensor unit and the

Yitran IT700 PLC modem (Fig. 14 b). See the high-resolution schematic and the detailed

BOM in Appendix E. For pin configurations see Appendix H.

16

(a)

17

(b)

Fig. 14. The schematic of the LDCU module.

Fig. 15. The detailed layout of the LDCU PCB.

4.1.5. DPS hardware

The DPS is realized by the LCM-25 DA power supply module manufactured by MEAN WELL

(see Fig. 16).

Fig. 16. LCM-25DA DALI-compatible power supply.

LCM-25 DA is a 25W multiple-stage output current LED power supply. One single unit

supplies multiple current levels (350mA, 500mA, 600mA, 700mA, 900mA, 1050 mA). The

current levels are able to be easily switched by adjusting the built-in DIP switch. LCM-25 DA

also provides the dimming function that is controlled by push dimming or DALI signal.

Moreover, the synchronization design allows the dimming for up to 10 units of LCM-25 DA to

be controlled simultaneously. For more technical details see Appendix F.

18

4.2. Software components

In this section a brief overview of the software components of the CCU is presented. The

low-level APIs are written in C++.

4.2.1. Low-level APIs

4.2.1.1. TH02 I2C API (if-CCU-SU)

There is a single class implementing the if-CCU-SU interface functionalities. This class,

called ‘th02’ uses the class library mraa [6] to access the I2C bus of the Intel Edison

compute module. The naming of this class implies that it is specifically developed for the

TH02 temperature and humidity sensor. The class provides the user with the following

functions:

● Constructor parameters: none

● check_sensor()

○ Function: The function checks whether there is a TH02 sensor connected to

the I2C bus by sending an ID read request. If the bus is not responding or

invalid device ID is read, the function throws a

‘sensor_not_responding_exception’ exception.

○ Parameters: none

○ Return value: void

● heater_on()

○ Function: The function sends a command through the I2C bus, which turns

the heater of the TH02 sensor on.

○ Parameters: none

○ Return value: void

● heater_off()

○ Function: The function sends a command through the I2C bus, which turns

the heater of the TH02 sensor off.

○ Parameters: none

○ Return value: void

● get_rh()

○ Function: The function sends a relative humidity query through the I2C bus.

○ Parameters

■ unsigned timeout_ms: If the sensor does not respond within a time

period defined in the parameter, the function throws a

‘conversion_timed_out_exception’ exception.

○ Return value: double: The temperature-compensated relative humidity

reading.

● get_temp()

○ Function: The function sends a temperature query through the I2C bus.

○ Parameters

19

■ unsigned timeout_ms: If the sensor does not respond within a time

period defined in the parameter, the function throws a

‘conversion_timed_out_exception’ exception.

○ Return value: double: The temperature reading.

The ‘th02’ class defines exceptions which are derived from the ‘exception’ class defined in

the Standard Template Library. The ‘th02’ class defines the following exceptions:

● sensor_not_responding_exception: There are no sensors connected to the I2C bus,

or the device connected does not respond, or the response does not contain the

device ID expected.

● conversion_timed_out_exception: The I2C device does not respond to a query within

the predefined timeout period.

4.2.1.2. LED interface API (if-CCU-LDCU)

The two-layer interface called if-CCU-LDCU in Fig. 2 is implemented by two classes in the

CCU software. The class called ‘ppp_link’ implements packet encapsulation/decapsulation

according to the PPP standard, while the class called ‘led_interface’ uses ‘ppp_link’ services

to embed LED luminance control and measurement data into the PPP frames’ payload

fields. The ‘ppp_link’ class uses the mraa [6] class library to access UART modules, and it

provides the following interface:

● Constructor parameters

○ use_console_port: There are two UART modules inside the Intel Edison

compute module. One of them is shared between the user applications and

the operating system’s console. This parameter determines, which one is

initialized for use as a PPP link. If the console-UART is used, the service of

the operating system forwarding the console information to the UART module

should be disabled. This is done by disabling the corresponding systemd

service in the CCU that provides console access to the device via the UART

channel. This change is permanent across restarts of the CCU.

● reset()

○ Function: The function resets the link, including receive and transmit FIFOs,

and status information.

○ Parameters: none

○ Return value: void

● receive_a_packet()

○ Function: The function checks the UART’s input FIFO for data. If any data are

present, the function starts to decapsulate them according to the frame format

presented in Section 3.2.2. If no data is available, the function throws an

‘uart_timeout_exception’ exception as the timeout period defined in parameter

‘timeout’ expires.

○ Parameters

■ unsigned timeout: A timeout period for UART packet frame reception

given in milliseconds. If no data is available in the UART receive FIFO,

the function throws an ‘uart_timeout_exception’ exception as this

timeout period expires.

20

■ char packet_buffer[32]: A 32-byte buffer for the data read from the

UART input FIFO.

○ Return value: unsigned char: Number of bytes in the PPP payload.

● transmit_a_packet()

○ Function: The function encapsulates the content of the input data according to

the PPP frame structure presented in Section 3.2.2. and sends the

encapsulated byte stream to the UART transmission buffer.

○ Parameters

■ unsigned number_of_bytes: The number of bytes for encapsulating.

■ unsigned packet_buffer[32]: A 32-byte buffer containing the raw

payload data intended to be encoded and sent through the link.

○ Return value: void

The ‘ppp_link’ class defines exceptions which are derived from the ‘exception’ class defined

in the Standard Template Library. The ‘ppp_link’ class defines the following exceptions:

● uart_timeout_exception: No data appears in the receive FIFO within a predefined

time period.

● receive_fifo_overflow_exception: The PPP-encoded byte stream includes more than

32 bytes.

● transmit_buffer_overflow_exception: The number of bytes to encode and transmit

exceeds 32.

The ‘led_interface’ class provides the following functions:

● Constructor parameters: none

● check_connection()

○ Function: The function checks whether there is another link node at the end of

the UART channel, which responds to the ‘check connection’ request. If no

response is received within 10 seconds or the format of the response is

invalid, a ‘connection_error_exception’ exception is thrown by the function.

○ Parameters: none

○ Return value: void

● set_luminance()

○ Function: The function sends the ‘set_luminance’ command through the link.

○ Parameters

■ unsigned char luminance: The new value of the DALI luminance. If the

luminance value is greater than 254, the function throws an

‘invalid_luminance_exception’ exception.

○ Return value: void

● get_luminance()

○ Function: The function sends a luminance query through the link.

○ Parameters: none

○ Return value

■ unsigned char: The current luminance value.

● set_fade()

○ Function: The function sends the ‘set_fade’ command through the link.

○ Parameters

21

■ unsigned char fade: The new value of the DALI fade speed.

○ Return value: void

● get_u()

○ Function: The function sends a LED string voltage query through the link.

○ Parameters

■ unsigned char uid: The identifier of the LED string to be queried.

○ Return value: double: The value of the LED string voltage in Volts.

● get_i()

○ Function: The function sends a LED string current query through the PPP link.

○ Parameters

■ unsigned char iid: The identifier of the LED string to be queried.

○ Return value: double: The value of the LED string current in mAs.

The ‘led_interface’ class defines exceptions which are derived from the ‘exception’ class

defined in the Standard Template Library. The ‘led_interface’ class defines the following

exceptions:

● connection_error_exception: The device on the other end of the link does not

respond or its response cannot be decoded.

● command_not_acknowledged_exception: No acknowledge received to the command

sent by the CCU within 10 seconds.

● invalid_luminance_exception: The luminance value posted for transmission is greater

than 254.

● checksum_error_exception: An error encountered during transmission and the

checksum field of the received frame is not equal to that calculated by the CCU

based on the received data.

● checksum_error_response_exception: The LDCU sends a ‘checksum error’ response

back, indicating that a transmission error occurred.

● invalid_response_exception: The LDCU sends an invalid response.

● invalid_channel_id_exception: The if-CCU-LDCU interface supports only 4 LED

strings. The string identifiers used in the queries must be between 0 and 3.

4.2.1.3. Yitran host API (if-CCU-MSM)

The aim of the Yitran host API is to provide the user with C++ classes hiding the UART-

based interface of the Yitran modem’s network layer, making it possible to develop

applications over the PLC network in a more efficient manner. This UART-based host

interface protocol, which is a baseline for this API, is defined in Appendix A.

The Yitran host API consists of multiple classes, whose relations are indicated by the UML

class diagram in Fig. 17.

22

Fig. 17. UML class diagram indicating the relations among the Yitran host API constructs.

The central element is the ‘yitran_host’ base class responsible for concentrating the

functionalities, which are the same in case of the NC and the RS nodes. It uses an

‘mraa::Uart’ class to connect to the 8051 microcontroller of the Yitran IT700 modem. This

connection practically represents the link between our application logic and the network layer

of the Y-Net protocol stack implemented by the 8051 microcontroller. The ‘mraa::Gpio’ class

is needed because the Yitran IT700 modem shall be reset eventually. The resetting is done

by pulling it’s reset pin low for a given time period. The reset pin is connected to a general

purpose I/O pin of the Intel Edison compute module. This I/O pin may be accessed through

the ‘mraa::Gpio’ class from the user applications running on the compute module.

The packet reception is realized in a blocking form in ‘yitran_host’. If a blocking receive

function is called, with a certain timeout period, the eventually received packet is stored into

a temporary variable with a type of ‘yitran_packet’. This class is a special container class

carrying the information encapsulated in a yitran packet sent by the Y-Net network layer:

● Command start symbol: Yitran packets start with a special command start symbol

(0xCA), which may be used to resynchronize the communication with the network

layer.

● Payload size: The number of bytes encapsulated into the yitran packet.

● Packet type: The type of the packet received (indication from a lower layer, packet

carrying user data, or a response packet after a command).

● Opcode: There are several types of indications and user data packets. The

subcategories are identified by this byte.

● Payload: The payload field of the yitran packet. In this API, the maximum size of a

packet is 256 bytes (including header).

There are additional fields of the ‘yitran_packet’ class, which are only interpretable in case of

packets carrying user information (instead of indications from lower levels of the protocol

stack). These member data are accessible after a decoding step:

● Origin ID: The sender of the packet.

● Final ID: The destination of the packet.

● User payload size: The size of the user payload data (header and addressing

information excluded from the yitran packet).

23

● User payload: The user payload encapsulated into a yitran packet (without the

addressing information).

There are two additional classes derived from ‘yitran_host’, namely the ‘yitran_nc’ and the

‘yitran_rs’ classes. They are responsible for the tasks performed specifically on the NC and

the RS nodes respetively. There are several indication types, which carry information about

new RS nodes connecting to the network and another ones disconnecting from it. These

indication provide information about nodes and their connection status. The class named

‘yitran_node_descriptor’ is a container for this information:

● Node logical ID: The identifier of the node in the network.

● Parent logical ID: The identifier of the node’s parent in the network.

● Connection status: The new status of the node:

○ Disconnected

○ Connected (good quality)

○ Connected (poor quality)

The ‘yitran_host’ class defines the following data members:

● public yitran_packet recently_received_packet: The blocking receive functions

store the received packets into this temporary variable. It may be decoded thereafter

to get user information or other data encapsulated in a Yitran packet.

● protected mraa::Uart* yitran_uart: A pointer to the object, which through the UART

channel connected to the 8051 microcontroller of the Yitran modem may be

accessed.

● protected mraa::Gpio* yitran_reset_pin: A pointer to an object, which through the

reset pin of the Yitran modem may be accessed.

The ‘yitran_host’ class provides the following public functions:

● Constructor parameters

○ bool use_console_port: The Intel Edison compute module includes two UART

channels. One of them is shared between a service of the operating system

sending console information to this channel and the user applications. If this

UART channel is intended to be used in a user application, the corresponding

service shall be disabled in the operating system. The constructor parameter

defines, which UART channel shall be initialized for the user application.

● reset()

○ Function: The function resets the Yitran IT700 modem by pulling its reset pin

to LOW for 1 second.

○ Parameters: none

○ Return value: void

● send_packet()

○ Function: The function sends a single Yitran packet. The checksum is

calculated automatically.

○ Parameters

■ const yitran_packet& packet_2_send: The prepared Yitran packet to

send.

24

○ Return value: void

● get_packet()

○ Function: The function receives a single packet and it checks the checksum.

The bytes received before the command start symbol are discarded. The

decoded packet is stored into the ‘recently_received_packet’ member variable

of the ‘yitran_host’ object.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: void

● wait_for_runtime_indication()

○ Function: The function waits for the following indications:

■ ‘connectivity_status_with_rs’: The NC may receive an indication that a

connection with an RS became valid/invalid.

■ ‘new_connection_to_nc’: The NC may receive an indication that a new

RS has connected to it.

■ ‘disconnected_from_nc’: An RS may receive an indication that it has

been disconnected from the NC.

■ ‘connected_to_nc’: An RS may receive an indication that it has been

connected to the NC.

■ ‘rx_intranetworking_packet’: The NC and an RS may receive an

indication that a new RX intranetworking packet has been received.

The function returns the type of the indication received. If any other type of

indication is received, the function returns ‘unknown_indication’. In case of

timeout, the function throws a ‘packet_reception_timeout’ exception. The

decoded packet is stored into the ‘recently_received_packet’ member variable

of the yitran_host object.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ is thrown.

○ Return value: runtime_indication: The indication type received (enumerated

type).

● decode_rx_intranetworking_packet()

○ Function: After receiving an RX intranetworking packet indication, this

function may be used to get the relevant information stored into the payload

(command data) field of the indication. Relevant information:

■ Origin ID

■ Final ID

■ User payload

○ Parameters: none

○ Return value: void

● wait_for_reset_response()

○ Function: The function receives a single Yitran packet. If the received packet

is a reset response, the function returns true, otherwise it returns false. If no

packet is received within the timeout period, the function throws a

‘packet_reception_timeout_exception’ exception.

○ Parameters

25

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ is thrown.

○ Return value: void

● wait_for_go_online_response()

○ Function: The function receives a single Yitran packet. If the received packet

is a go online response, the function returns true, otherwise it returns false. If

no packet is received within the timeout period, the function throws a

‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ is thrown.

○ Return value: void

● acknowledged_nop()

○ Function: The function sends a ‘NOP’ request and waits for the response. If

no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ is thrown.

○ Return value: void

● acknowledged_set_network_size()

○ Function: The functions sends a ‘Set Device Parameters’ request setting the

network size to the given value. Thereafter, the function waits for the

response and checks its status field. If no response comes back, the function

throws a ‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned char size: The new network size to set.

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ is thrown.

○ Return value: bool: True, if the status field of the response indicates that the

command was executed successfully, false otherwise.

● verified_set_network_size()

○ Function: The functions sends a ‘Set Device Parameters’ request setting the

network size to the given value. Thereafter, the function waits for the

response and checks its status field. If no response comes back, the function

throws a ‘packet_reception_timeout_exception’ exception. If a response is

received, the function checks the status field. If the status field indicates

command error, the function returns false immediately. If the status field

indicates a successful command, the function sends a ‘Get Device

Parameters’ request, reading the network size. Thereafter, the function waits

for the response. If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception. If a response is received,

the function checks the network size value.

○ Parameters

■ unsigned char size: The new network size to set.

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ is thrown.

26

○ Return value: bool: If the network size is set to size, the function returns true,

otherwise it returns false.

● acknowledged_set_node_id()

○ Function: The functions sends a ‘Set Device Parameters’ request setting the

node ID to the given value. Thereafter, the function waits for the response

and checks its status field. If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned char size: The new node ID to set.

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if the status field of the response indicates that the

command was executed successfully, false otherwise.

● verified_set_node_id()

○ Function: The functions sends a ‘Set Device Parameters’ request setting the

node ID to the given value. Thereafter, the function waits for the response

and checks its status field. If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception. If a response is received,

the function checks the status field. If the status field indicates command

error, the function returns false immediately. If the status field indicates a

successful command, the function sends a ‘Get Device Parameters’ request,

reading the node ID. Thereafter, the function waits for the response. If no

response comes back, the function throws a

‘packet_reception_timeout_exception’ exception. If a response is received,

the function checks the node ID value.

○ Parameters

■ unsigned char size: The new node ID to set.

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: If the node ID is set to size, the function returns true,

otherwise it returns false.

● get_operation_mode()

○ Function: The function sends a ‘Get Device Parameters’ request addressing

operation mode. Thereafter, the function waits for the response for

timeout_ms. In case of timeout, a ‘packet_reception_timeout_exception’

exception is thrown. If the response is successfully received, the response is

stored into ‘recently_received_packet’.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if the operation mode is set to NC, false otherwise.

● get_network_size()

○ Function: The function sends a ‘Get Device Parameters’ request addressing

network size. Thereafter, the function waits for the response for timeout_ms.

In case of timeout, a ‘packet_reception_timeout_exception’ exception is

thrown. If the response is successfully received, the response is stored into

‘recently_received_packet’.

○ Parameters

27

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: unsigned char: The network size.

● get_node _id()

○ Function: The function sends a ‘Get Device Parameters’ request addressing

node ID. Thereafter, the function waits for the response for timeout_ms. In

case of timeout, a ‘packet_reception_timeout_exception’ exception is thrown.

If the response is successfully received, the response is stored into

‘recently_received_packet’.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: short: The node ID.

● acknowledged_save_device_parameters()

○ Function: The function sends a ‘Save Device Parameters’ request and it waits

for response for timeout_ms. If no response comes back, the function throws

a ‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if the status field of the response indicates that the

command was executed successfully, false otherwise.

● acknowledged_go_online()

○ Function: The function sends a ‘Go Online’ request and it waits for response

for timeout_ms. If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if the status field of the response indicates that the

command was executed successfully, false otherwise.

● acknowledged_packet_tx()

○ Function: The function sends a ‘Packet TX’ command. If the user payload

size is greater than 245, the function throws a

‘invalid_user_payload_size_exception’ exception. The function waits for

‘Packet TX Admission’ and ‘Packet TX Transmission’ responses. Any other

types of packets are discarded while waiting for these. In case of timeout, the

function throws a ‘packet_reception_timeout_exception’ exception. Packet TX

command parameters:

■ Data Service Type: Intranetworking Unicast

■ Priority: Normal

■ Ack Service: Ack required

■ Hops: 8

■ Gain: 7

■ Tag: 0

■ Encrypt: 0

■ Destination port: 0

■ target ID LSB: destination_id LSB

28

■ target ID MSB: destination_id MSB

■ user payload: user_payload

○ Parameters

■ short destination_id: The logical ID of the target node.

■ unsigned char* user_payload: The message to send.

■ unsigned char user_payload_size: The size of the message to send.

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: If any of the responses indicates an error (the packet tx

request is rejected or the transmission fails), the function returns false. If the

transmission is successful, the function returns true.

● non_acknowledged_packet_tx()

○ Function: The function sends a ‘Packet TX’ command. If the user payload

size is greater than 245, the function throws a

‘invalid_user_payload_size_exception’ exception. Packet TX command

parameters:

■ Data Service Type: Intranetworking Unicast

■ Priority: Normal

■ Ack Service: Ack required

■ Hops: 8

■ Gain: 7

■ Tag: 0

■ Encrypt: 0

■ Destination port: 0

■ target ID LSB: destination_id LSB

■ target ID MSB: destination_id MSB

■ user payload: user_payload

○ Parameters

■ short destination_id: The logical ID of the target node.

■ unsigned char* user_payload: The message to send.

■ unsigned char user_payload_size: The size of the message to send.

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: void.

● print_recently_received_packet()

○ Function: The function prints the recently received packet to the standard

output.

○ Parameters: none

○ Return value: void

The ‘yitran_host’ class implements the above described public functions using the following

protected functions:

● get_byte()

○ Function: The function receives a single byte from the UART channel.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

29

■ char* buffer: The received byte is stored into this buffer.

○ Return value

■ bool: True, if the byte reception is successfull, false otherwise.

● send_nop()

○ Function: The function sends a ‘NOP’ request.

○ Parameters: none

○ Return value: void

● set_nc_operation_mode()

○ Function: The function sends a ‘Set Operation Mode’ request setting the

operation mode to NC.

○ Parameters: none

○ Return value: void

● set_rs_operation_mode()

○ Function: The function sends a ‘Set Operation Mode’ request setting the

operation mode to RS.

○ Parameters: none

○ Return value: void

● set_nc_database_size()

○ Function: The functions sets the NC database size.

○ Parameters

■ unsigned char size: The new NC database size.

○ Return value: void

● set_network_size()

○ Function: The functions sets the network size.

○ Parameters

■ unsigned char size: The new network size.

○ Return value: void

● set_node_id()

○ Function: The functions sets the node ID.

○ Parameters

■ short size: The new node ID.

○ Return value: void

● save_device_parameters()

○ Function: The function sends a ‘Save Device Parameters’ request.

○ Parameters: none

○ Return value: void

● go_online()

○ Function: The function sends a ‘Go Online’ request.

○ Parameters: none

○ Return value: void

The ‘yitran_host’ class defines exceptions which are derived from the ‘exception’ class

defined in the Standard Template Library. The ‘yitran_host’ class defines the following

exceptions:

● checksum_error_exception: A checksum error is detected during packet reception.

● packet_reception_timeout_exception: A packet reception timed out.

● reset_response_timeout_exception: The expected reset response timed out.

30

● invalid_nc_database_index_exception: The NC database index given to the function

is invalid.

● invalid_user_payload_size_exception: The user payload size exceeds the maximum

value.

● packet_tx_admission_failed_exception: The packet transmission process failed.

The ‘yitran_nc’ class defines the following data members:

● public short rs_address_table[256]: If the ‘one-shot network formation’ method is

used for network management (see Section 4.2.2.1.), this vector stores the logical

addresses of the RS nodes connected to the NC node.

● unsigned number_of_connected_rss: If the ‘one-shot network formation’ method is

used for network management (see Section 4.2.2.1.), this variable stores the number

of already connected RS nodes.

The ‘yitran_nc’ class provides the following public functions:

● Constructor parameters

○ bool use_console_port: The Intel Edison compute module includes two UART

channels. One of them is shared between a service of the operating system

sending console information to this channel and the user applications. If this

UART channel is intended to be used in a user application, the corresponding

service shall be disabled in the operating system. The constructor parameter

defines, which UART channel shall be initialized for the user applicartion.

● send_set_luminance_command()

○ Function: The function sends a 'data exchange request' to the RS node with

logical id of 'destination_id'. The 'data exchange request' indicates that the

NC node wants to access some data provided by the RS node or to adjust the

luminance of it. The 'set luminance commad' consists of the following bytes:

■ byte #0 (sent first): 0x80: command header

■ byte #1: flag indicating whether the luminance shall be adjusted or not

■ byte #2: new luminance value

This function sends the data exchange request with byte #1 set to 0x01.

○ Parameters

■ short destination_id: The logical address of the RS node addressed.

■ unsigned char new_luminance: The new luminance value.

○ Return value: void

● send_full_hk_request_command()

○ Function: The function sends a 'data exchange request' to the RS node with

logical id of 'destination_id'. The 'data exchange request' indicates that the

NC node wants to access some data provided by the RS node or to adjust the

luminance of it. The 'set luminance commad' consists of the following bytes:

■ byte #0 (sent first): 0x80: command header

■ byte #1: flag indicating whether the luminance shall be adjusted or not

■ byte #2: new luminance value

This function sends the data exchange request with byte #1 set to 0x00.

○ Parameters

■ short destination_id: The logical address of the RS node addressed.

31

○ Return value: void

● decode_data_exchange_reply()

○ Function: When an RS node receives a 'data exchange request', it'll send a

set of HK data back to the NC node, and it'll adjust the luminance, if it's

needed (see byte #1 in 'data exchange request'). When the NC node receives

the reply packet to a 'data exchange request', it shall decode it by calling this

function. This function processes the 'recently_received_packet' of the

yitran_nc object (publicly inherited from yitran_host). The function returns a

complete 'rs_hk_data_set' struct with the recently received HK data.

○ Parameters: none

○ Return value

■ rs_hk_data_set: A structure containing the recently received HK data.

● reset_and_go_online()

○ Function: The function initializes the Yitran modem as an NC node, saves the

device parameters into the non-volatile memory, resets the modem and

sends a go-online request.

○ Parameters

■ unsigned char network_size: The number of expected RSs in the

network.

○ Return value: bool: The function returns true, if the initialization is successful,

it returns false otherwise.

● initialize_and_establish_a_network()

○ Function: The function initializes the NC node and the PLC network

automatically. If ‘initial_number_of_rss’ nodes are connected, the function

returns true. In this case, ‘rs_address_table’ is ready to use. The

network_size stores the number of nodes in the PLC network. In case of a

timeout, the function throws a ‘packet_reception_timeout_exception’

exception.

○ Parameters

■ unsigned char initial_number_of_rss: The number of the initial

expected RS nodes in the PLC network. After ‘initial_number_of_rss’

RSs have connected to the NC, the NC may send the

‘traffic_enabled_indication’ to the connected RSs.

■ unsigned network_size: The number of expected RS nodes in the PLC

network.

○ Return value: bool: If ‘initial_number_of_rss’ nodes are connected, the

function returns true.

● send_data_traffic_enabled_indication()

○ Function: After the PLC network is established, this function may be used to

send an indication to the RSs that they can start to send and receive user

packets.

○ Parameters: none.

○ Return value: void

● decode_connectivity_status_with_rs_indication()

○ Function: After receiving a ‘Connectivity Status with RS’ indication, this

function may be used to get the relevant information stored in the payload

(command data) field of the indication. Relevant information:

■ node ID: The ID of the node sending the indication.

32

■ Connectivity status: The new connectivity status of the node.

○ Parameters

■ yitran_node_descriptor& nd: A temporary variable storing the relevant

data of the recently received indication.

○ Return value: void.

● decode_new_connection_to_nc_indication()

○ Function: After receiving a ‘New Connection to NC’ indication, this function

may be used to get the relevant information stored in the payload (command

data) field of the indication. Relevant information:

■ node ID: The logical ID of the node sending the indication.

■ parent ID: The logical ID of the node's parent.

○ Parameters

■ yitran_node_descriptor& nd: A temporary variable storing the relevant

data of the recently received indication.

○ Return value: void.

● wait_for_network_id_assigned_indication()

○ Function: The function receives a single packet. If the received packet is a

‘Network ID Assigned’ indication, the function returns true, otherwise it returns

false.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if network ID assigned indication has been

successfully received, false otherwise.

● wait_for_new_connection_to_nc_indication()

○ Function: The function receives a single packet. If the received packet is a

‘New Connection to NC’ indication, the function returns true, otherwise it

returns false. If the received packet is a ‘New Connection to NC’ indication,

the parameters of the new node are stored into nd as follows:

■ node ID: received

■ parent ID: received

■ serial number: 0

■ connectivity status: 1

○ Parameters

■ yitran_node_descriptor& nd: A temporary variable storing the relevant

data of the recently received indication.

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if new connection to NC indication has been

successfully received, false otherwise.

● acknowledged_set_nc_operation_mode()

○ Function: The function sends a ‘Set Device Parameters’ request setting the

operation mode to NC. Thereafter, the function waits for the response and

checks the status field. If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

33

○ Return value: bool: True, if the status field of the response indicates that the

command was executed successfully, false otherwise.

● verified_set_nc_operation_mode()

○ Function: The function sends a ‘Set Device Parameters’ request setting the

operation mode to NC. Thereafter, the function waits for the response and

checks the status field. If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception. If a response is received,

the function checks the status field. If the status field indicates command

error, the function returns false immediately. If the status field indicates a

successful command, the function sends a ‘Get Device Parameters’ request,

reading the operation mode. Thereafter, the function waits for the response. If

no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception. If a response is received,

the function checks the operation mode value. If the operation mode is set to

NC, the function returns true, otherwise it returns false.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if the operation mode is successfully set to NC, false

otherwise.

● acknowledged_set_nc_database_size()

○ Function: The function sends a ‘Set Device Parameters’ request setting the

NC database size to size. Thereafter, the function waits for the response and

checks the status field. If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned char size: The new size of the NC database.

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if the status field of the response indicates that the

command was executed successfully, false otherwise.

● verified_set_nc_database_size()

○ Function: The function sends a ‘Set Device Parameters’ request setting the

NC database size to size. Thereafter, the function waits for the response and

checks the status field. If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception. If a response is received,

the function checks the status field. If the status field indicates command

error, the function returns false immediately. If the status field indicates a

successful command, the function sends a ‘Get Device Parameters’ request,

reading the NC database size. Thereafter, the function waits for the response.

If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception. If a response is received,

the function checks the NC database size value.

○ Parameters

■ unsigned char size: The new size of the NC database.

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

34

○ Return value: bool: If the NC database size is set to size, the function returns

true, otherwise it returns false.

● get_nc_database_size()

○ Function: The function sends a ‘Get Device Parameters’ request addressing

NC database size. Thereafter, the function waits for the response for

timeout_ms. In case of timeout, a ‘packet_reception_timeout_exception’

exception is thrown. If the response is successfully received, the response is

stored into ‘recently_received_packet’.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: unsigned char: NC database size

● get_current_nc_database_size()

○ Function: The function sends a ‘Get NC Database Size’ request addressing.

Thereafter, the function waits for the response for ‘timeout_ms’. In case of

timeout, a ‘packet_reception_timeout_exception’ exception is thrown. If the

response is successfully received, the response is stored into

‘recently_received_packet’.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: unsigned char: Current number of RSs connected to the NC.

● get_node_information()

○ Function: The function sends a ‘Get Node Information’ request. The

requested node is identified based on the NC database index. If the NC

database index is invalid (greater than ‘NC database size’), the function

throws an ‘invalid_nc_database_index_exception’ exception. In case of

timeout, a ‘packet_reception_timeout_exception’ exception is thrown. The

node information is stored into nd.

○ Parameters

■ unsigned char node_index: The logical ID of the node, which

information is needed from.

■ yitran_node_descriptor& nd: A temporary variable storing the relevant

data of the recently received indication.

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exceptionis thrown.

○ Return value: bool: If the response's status field indicates a successful

command, the function returns true, otherwise it returns false.

The ‘yitran_rs’ class provides the following public functions:

● Constructor parameters

○ bool use_console_port: The Intel Edison compute module includes two UART

channels. One of them is shared between a service of the operating system

sending console information to this channel and the user applications. If this

UART channel is intended to be used in a user application, the corresponding

service shall be disabled in the operating system. The constructor parameter

defines, which UART channel shall be initialized for the user applicartion.

35

● reset_and_go_online()

○ Function: The function initializes the Yitran modem as an RS node, saves the

device parameters into the non-volatile memory, resets the modem and

sends a go-online request.

○ Parameters

■ unsigned char network_size: The number of expected RSs in the

network.

○ Return value: bool: The function returns true, if the initialization is successful,

it returns false otherwise.

● initialize_and_login()

○ Function: The function initialized the RS node and after the address reception

is done, it sends a login message to the NC. In case of a timeout, the function

throws a ‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned char network_size: The number of expected RSs in the

network.

○ Return value: bool: If the RS initialization, address reception, and login

message transmission is successful, the function returns true, otherwise it

returns false.

● wait_for_data_traffic_enabled_indication()

○ Function: The function waits for the ‘data traffic enabled’ indication from the

NC. In case of a timeout, the function throws a

‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned char network_size: The number of expected RSs in the

network.

○ Return value: bool: If the indication received is a valid enable data traffic

indication, the function returns true, otherwise it returns false.

● decode_disconnected_from_nc_indication()

○ Function: After receiving a ‘Disconnected from NC’ indication, this function

may be used toget the relevant information stored in the payload (command

data) field of the indication. Relevant information: Reason of disconnection.

○ Parameters: none

○ Return value

■ disconnect_reason (enumerated type) (see Appendix A for exact

definitions)

● parent_unstable

● nvr_nack

● infinity

● init

● cant_start_timer

● nvr_refused

● nvr_enq

● invalid_node_id

● disconnected_by_application_request

● unknown_reason

● decode_connected_to_nc_indication()

36

○ Function: After receiving a ‘Connected to NC’ indication, this function may be

used to get the relevant information stored in the payload (command data)

field of the indication. Relevant information: parent ID: The logical ID of the

node's parent.

○ Parameters

■ yitran_node_descriptor& nd: A temporary variable storing the relevant

data of the recently received indication.

○ Return value: void

● wait_for_connected_to_nc_indication()

○ Function: The function receives a single packet. If the received packet is a

‘Connected to NC’ indication, the function returns true, otherwise it returns

false. Note: ‘Connecting to NC’ timeout recommendation: 30 sec

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if Connected to NC indication has been successfully

received, false otherwise.

● acknowledged_set_rs_operation_mode()

○ Function: The function sends a ‘Set Device Parameters’ request setting the

operation mode to RS. Thereafter, the function waits for the response and

checks the "status" field. If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if the status field of the response indicates that the

command was executed successfully, false otherwise.

● verified_set_rs_operation_mode()

○ Function: The function sends a ‘Set Device Parameters’ request setting the

operation mode to RS. Thereafter, the function waits for the response and

checks the status field. If no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception. If a response is received,

the function checks the status field. If the status field indicates command

error, the function returns false immediately. If the status field indicates a

successful command, the function sends a ‘Get Device Parameters’ request,

reading the operation mode. Thereafter, the function waits for the response. If

no response comes back, the function throws a

‘packet_reception_timeout_exception’ exception. If a response is received,

the function checks the operation mode value. If the operation mode is set to

RS, the function returns true, otherwise it returns false.

○ Parameters

■ unsigned timeout_ms: If no packet is received within this time period,

a ‘packet_reception_timeout_exception’ exception is thrown.

○ Return value: bool: True, if the operation mode is successfully set to RS, false

otherwise.

37

4.2.2. Yitran host API use cases

The above described Yitran host API may be used in different ways to implement user

applications. In this section, two possible solutions are presented, aiming different purposes.

They differ mainly in the ways they separate Yitran network management and application

logic tasks.

The nominal PLC network operation from the viewpoint of the NC node and an RS node is

shown in Fig. 18 and Fig. 19 respectively.

Fig. 18.Opearation of the PLC network from the viewpoint of the NC node.

Fig. 18 indicates that the user application running on the NC node shall only initialize the NC

node modem and wait for indications, which may carry connectivity information or user data.

Fig. 19.Opearation of the PLC network from the viewpoint of an RS node.

Based on Fig. 19, the user application running on the RS node may be very similar to that

one running on the NC node; It shall initialize the modem, and wait for indications carrying

connection information or user data.

38

However, during development, some bugs have been found in the applied Yitran IT700

modem (or its documentation). The problem can be summarized as follows: The user

application running on the NC node does not receive any indications from the IT700 SoC’s

8051 microprocessor regarding RS connections (‘New Connection to NC’, ‘Connectivity

Status with RS’). However, only the indications are missing, the lower layers seem to

establish the connections between the nodes. Therefore, a subset of network management

tasks had to be mapped onto the application layer instead of the network layer provided by

the IT700 modem. That means that the routing table carrying the node IDs of the already

connected RS nodes are managed by the user application. Two solutions have been

developed to perform this task:

● One-shot network formation: Using this method, the PLC network with all its RS

nodes is formed before any user application logic activities. This solution is

developed for testing only, it assumes a very reliable connection between the nodes.

There is no chance to reconnect a node, if it is disconnected. The advantage is that

the application logic and the PLC network management can be completely separated

from each other, which makes this solution very easy to apply and favorable during

application logic development and debugging.

● Continouos network management: Using this method, the application logic and the

network management tasks are running in a round-robin manner. The advantage of

this solution is that it very robust, both the NC and the RSs handle disconnections, so

in case of hardware errors and noisy interconnection medium, the network remains

stable because of the connection status detection and correction algorithms

implemented by the nodes. The disadvantage is that in this case the user application

logic itself is embedded in a pre-defined, strict round-robin architecture, which makes

the development and debugging more difficult, and it results in a slower user

application logic and debug cycles.

In the following subsections, detailed presentations are provided, how a user application can

be created with the different network management methods.

4.2.2.1. One-shot network formation

The one-shot network formation method is developed for testing purposes. In this solution,

the PLC network is established before any user application logic activities. Fig. 20 shows a

simplified flow chart of the user applications applying one-shot network formation method.

39

Fig. 20. One-shot network formation mechanism from the viewpoint of the NC node (left) and an RS node (right).

Since the connection indications on the NC side (see Fig. 18) seem to be missing, another

hand-shake mechanism is implemented to make it possible for the NC node to detect new

RSs and build its own routing table. As the connection between the NC and the new RS is

established on the network level, the application level host of the RS node is signalled that it

is connected to the NC. Since the NC does not know anything about this connection, the RS

node sends a simple intranetworking packet to the NC with the node ID it got from its

network layer.

Fig. 21. A more detailed scheme of the one-shot network formation mechanism from the viewpoint of the NC

node.

As the NC node receives this intranetworking packet with the special ‘login request’ mark in

the packet header, the NC can store the recently received node ID in its routing table.

40

Fig. 22. A more detailed scheme of the one-shot network formation mechanism from the viewpoint of the RS

node.

As all RSs have sent a login request to the NC and the NC stored all of them into its routing

table, the network is considered established. The NC sends a ‘data_traffic_enabled’

indication (another special intranetworking packet) to all the registered RS nodes and starts

its user application logic. As the RS nodes receive the ‘data_traffic_enabled’ indication, they

also start their user application logics. Fig. 21 and Fig. 22 show a more detailed flow diagram

of the one-shot network formation mechanism in case of the NC and the RS nodes

respectively.

The obvious disadvantage of this network formation method is that there is no chance for a

disconnected RS node to reconnect. Actually, any hardware errors or noisy medium can

cause complete network collapse. However, the API described above makes it possible to

form a network very fast and clear (using a single API function on either side). In case of

application logic testing, when the PLC network is based on a stable, low-noise physical

medium (realized by short wiring without high voltages applied on them), this method is

favorable.

4.2.2.2. Continouos network management

In the continouos network management method, the user application logic and the PLC

network management tasks are performed in a round-robin manner. Every cycle in the

application superloop contains subtasks regarding the connections of the PLC network and

the user application logic itself (see Fig. 23).

41

Fig. 23. The continouos network management mechanism from the viewpoint of the NC node (left) and an RS

node (right).

The connections between the NC and the RSs are established in a similar way as seen in

case of the one-shot network formation method. The same login message mechanism is

used to notify the NC node about the RSs’ logical ID got from the network layer. The

difference is that in the continouos network management method, these connections are

reconsidered cyclically. Fig. 24 and Fig. 25 show a more detailed flow diagram of the

continouos network management method.

42

Fig. 24. A more detailed scheme of the continouos network management mechanism from the viewpoint of the

NC node.

The main cycle of the NC node’s application consists of three main parts:

● Application logic: The user application performing its tasks using the already

connected RS nodes.

● New connection detection: The NC is looking for login messages from RS nodes,

which are not part of the PLC network yet.

● Connection confirmation: The NC node sends login confirmation requests to the

RS nodes, which are already connected to the PLC network.

Based on the responses received during the last two steps, the NC node cyclically refreshes

its routing table.

43

Fig. 25. A more detailed scheme of the continouos network management mechanism from the viewpoint of the

RS node.

The continouos network management method may be used in every circumstances

regarding hardware errors and the quality of the physical medium. If an RS node

disconnects for some reason, its application will eventually detect the problem and it will

restart its PLC modem. On the other hand, the NC is also able to detect the missing link and

it can manage its routing table accordingly.

Additionally, the scheme presented above is also able to handle modem errors. Both the NC

and the RS application layer is able to detect “suspicious” silence on the PLC network. In

such cases, the applications will restart their modems to ensure that the PLC network

remains operable.

4.2.3. Application logic

The description of the application logic is not part of this documentation.

44

4.2.4. Software tests

4.2.4.1. Standalone API tests

● SU API test (th02_test-cpp): The test verifies the functionality of the TH02 sensor

API.

● LDCU API test (led_interface_test.cpp): The test verifies the functionality of the

‘ppp_link’ and the ‘led_interface’ classes. The test covers the functionalities of the

LED DAQ and control unit and the interface denoted as if-CCU-LDCU.

● MSM standalone tests: These tests verify the collaboration between the Yitran

modem API functions created for the NC side and the RS side.

○ NC side (yitran_nc_app.cpp)

■ The Yitran modem is reset and initialized as NC.

■ A network creation is initialized according to the one-shot network

formation method described in Section 4.2.2.1.

■ After successful network creation, the NC node broadcasts the ‘data

traffic enabled’ indication.

○ RS side (yitran_rs_app.cpp)

■ The Yitran modem is reset and initialized as RS.

■ After initialization, the RS node wait for the ‘data traffic enabled’

indication from the NC node.

4.2.4.2. Low-level integration tests

● Intelligent LED control test (temp_feedback.cpp): The test verifies the collaboration

between the SU and the LDCU by implementing a control-loop keeping the LEDs in

an optimal operation point. The optimal LED string current is determined by the

temperature measured by the SU (TH02 temperature sensor). The actuation is

performed indirectly through the LDCU API, which adjusts the LED luminance (thus

the current) by controlling the DALI-capable LED driver (see Section 4.1.5).

○ if-CCU-LDCU is initialized (the connection between the Intel Edison compute

module and the LED DAQ and control unit is initialized and checked). The

connection is re-initialized in case of connection error wihin 1 second.

○ if-CCU-SU is initialized (the connection between the Intel Edison compute

module and the TH02 sensor is initialized and checked). The connection is re-

initialized in case of connection error wihin 1 second.

○ A luminance query is sent to the LDCU. The recent luminance is stored.

○ A temperature query is sent to the SU. The recent temperature is stored.

○ A current query is sent to the LDCU. The recent LED string current is stored.

○ The optimal operation point of the LED strings is calculated based on the

recent temperature read from the SU.

○ If the recent operating point current is less than the optimal value, the

luminance is increased by sending a luminance adjustment query to the

LDCU. If the recent operating point current is greater than the optimal value,

the luminance is decreased by sending a luminance adjustment query to the

LDCU.

○ The above described measurement-adjustment cycle is repeated infinitely.

45

● One-shot network formation and data exchange tests

○ Data exchange test - NC side (full_test_nc.cpp)

■ The Yitran modem is initialized as NC.

■ A PLC network is initialized using the one-shot network formation

method described in Section 4.2.2.1.

■ After the PLC network is formed, the NC broadcasts the ‘data traffic

enabled’ indication.

■ The luminance value is defined and a data exchange request is sent

to the RS nodes connected to the PLC network.

■ The replies sent back by the RS nodes include all HK information.

After packet reception, the NC node decodes the packet and displays

the HK data set on the standard output.

■ The luminance adjustment - HK data query cycle is repeated infinitely.

○ Data exchange test - RS side (full_test_rs.cpp)

■ if-CCU-LDCU is initialized (the connection between the Intel Edison

compute module and the LED DAQ and control unit is initialized and

checked). The connection is re-initialized in case of connection error

wihin 1 second.

■ if-CCU-SU is initialized (the connection between the Intel Edison

compute module and the TH02 sensor is initialized and checked). The

connection is re-initialized in case of connection error wihin 1 second.

■ The Yitran modem is initialized as RS.

■ The RS waits for the ‘data traffic enabled’ indication from the NC

node.

■ After receiving the ‘data traffic enabled’ indication, the RS waits for

data exchange requests.

■ If a data exchange request is received by the RS, it adjusts the LED

luminance values through the LDCU interface according to the request

packet sent by the NC.

■ After luminance adjustment, the RS constructs a reply packet

including all HK data and it sends them back to the NC node.

■ After sending the respone packet, the RS waits for another data

exchange requests from the NC node.

● Continouos PLC network management and exemplary PLC application logic tests

○ Exemplary application logic test - NC side (application_nc.cpp)

■ The Yitran modem is reset and initialized as NC.

■ The NC side of the network management process described in

Section 4.2.2.2 is started with the following application logic

functionality:

● A random luminance value is defined and a data exchange

request is sent to the RS nodes connected to the PLC network.

● The replies sent back by the RS nodes include all HK

information. After packet reception, the NC node decodes the

packet and displays the HK data set on the standard output.

○ Exemplary application logic test - RS side (application_rs.cpp)

46

■ if-CCU-LDCU is initialized (the connection between the Intel Edison

compute module and the LED DAQ and control unit is initialized and

checked). The connection is re-initialized in case of connection error

wihin 1 second.

■ if-CCU-SU is initialized (the connection between the Intel Edison

compute module and the TH02 sensor is initialized and checked). The

connection is re-initialized in case of connection error wihin 1 second.

■ The Yitran modem is reset and initialized as RS.

■ The RS side of the network management process described in

Section 4.2.2.2 is started with the following application logic

functionality:

● The RS waits for data exchange requests.

● If a data exchange request is received by the RS, it adjusts the

LED luminance values through the LDCU interface according

to the request packet sent by the NC.

● After luminance adjustment, the RS constructs a reply packet

including all HK data and it sends them back to the NC node.

● After sending the respone packet, the RS waits for another

data exchange requests from the NC node.

4.2.4.3. Application logic tests

The description of the application logic is not part of this documentation.

47

5. References

1. “IEEE Standard for Broadband over Power Line Networks: Medium Access Control

and Physical Layer Specifications”, IEEE Std 1901-2010

2. “Waze Social GPS, Map and Navigation”, https://www.waze.com Visited on:

11/07/2016

3. DALI: http://www.dali-ag.org/discover-dali/dali-standard.html

4. “Intel edison, one tiny platform, endless possibility,”

http://www.intel.com/content/www/us/en/do-it-yourself/edison.html Visited on:

07/07/2016

5. http://hackerboards.com/edison-iot-module-ships-with-atom-plus-quark-combo-soc/

Visited on: 07/07/2016

6. MRAA documentation - http://iotdk.intel.com/docs/master/mraa/

https://www.waze.com/
https://www.waze.com/
http://www.dali-ag.org/discover-dali/dali-standard.html
http://www.intel.com/content/www/us/en/do-it-yourself/edison.html
http://hackerboards.com/edison-iot-module-ships-with-atom-plus-quark-combo-soc/
http://iotdk.intel.com/docs/master/mraa/

48

6. Appendix

Appendix A - Yitran IT700 Host Interface Command Set User Guide

Appendix B - Intel Edison Compute Module

Appendix C - Intel Edison Breakout Board

Appendix D - Digital I2C Temperature and Humidity Sensor

Appendix E - The detailed schematic and BOM of LDCU PCB

Appendix F - LCM-25 DA specification

Appendix G - Photo documentation

Appendix H - Connector pin configurations

