
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Functional Verification Basics

The concept of functional verification

Self-checking testbenches

Qualifying the verification process

Reusability in verification

Dr. Lázár Jani, Dr. Péter Horváth

Department of Electron Devices, 2022

Functional Verification Basics

2

The objective of functional verification

▪ Verifying that the HDL model fulfills the requirements from functional
point-of-view.

• „HDL model”: Only the abstract model is checked, intended circuit structures
and synthesis issues are not investigated.

• „functional”: No physical characteristics are taken into account. E.g.
verification of timing characteristics is not part of functional verification.

Functional
verification

PASS

FAIL

Specification

RTL
model

RTL
design

Functional Verification Basics

3

The significance of functional verification

▪ The complexity of verification infrastructure increases more rapidly
than the complexity of the verified entity itself.

▪ In case of complex RTL IP cores

• 70% of the NRE goes into verification

• the number of verification engineers is double that of RTL designers

• only 20% of the code base is part of the synthesizable RTL model, 80%
describes the verification infrastructure

▪ BUT! Verification engineers do not need to find the causes of bugs!

„Debugging is twice as hard as writing the code in the first place. Therefore, if

you write the code as cleverly as possible, you are, by definition, not smart

enough to debug it.”

Brian W. Kernighan, 1974

Functional Verification Basics

4

Functional
verification

PASS FAIL

Informal
specification

(design concept)

RTL designer

Verification
infrastructure

Verification
engineer

System engineer /
Architect

interpret
(subjective)

RTL design

implement

RTL model

interpret
(subjective)

verif. env.
design

implement

OK

Specification

Design concept

Verification
environment

model

RTL model

Post-synthesis
verification

Pre-synthesis
verification

Validation

FAIL

OK

FAIL

FAIL

FAIL

Prototyping

Synthesis

FAIL

FAIL

OK: production

Functional Verification Basics

5

The „who’s to blame” game

▪ Specification, RTL design and
verification are done by
separate people / groups

▪ Possible causes of failing
verification process

• The RTL model is incorrect

• There is a flaw in the
verification infrastructure

• The specification is inaccurate,
ambiguous

▪ The objective is to find
discrepancies → improve the
design

Functional
verification

PASS FAIL

Informal
specification

(design concept)

RTL designer

Verification
infrastructure

Verification
engineer

System engineer /
Architect

interpret
(subjective)

RTL design

implement

RTL model

interpret
(subjective)

verif. env.
design

implement

6

FUNCTIONAL VERIFICATION AND ACCESSIBILITY

Functional Verification Basics

7

Types of verification based on accessibility

▪ White-box verification

• the HDL model is known to the verification
engineer

▪ Grey-box verification

• only limited access to the HDL model

• debug/error-injection interfaces

▪ Black-box verification

• the HDL model is not known

• only the primary interfaces can be used to
interact with the module in

cr
ea

si
n

g
co

n
tr

o
lla

b
ili

ty
a

n
d

 o
b

se
rv

a
b

ili
tythe RTL designer

usually takes part

not performed by
the designer

(at least it shouldn’t be…)

Functional Verification Basics

8

▪ White-box

• It is easy to locate the problematic details. The critical states are known and
they can be reached easily. The verification infrastructure is not reusable.

▪ Black-box

• The verification infrastructure (e.g. excitation patterns, reference models,
etc.) are reusable. It is hard to induce critical circumstances within the
module. The observable error and the cause can be very far from each other
in space and time as well.

▪ Grey-box

• Some implementation details are known by the verification engineer

• Some internal signals (e.g. FSMs’ state registers) are accessible through the
user interfaces

• Technically, it is the mixture of the white-box and black-box, from advantages
and disadvantages point-of-view.

Types of verification based on accessibility

Functional Verification Basics

9

Stimuli generation

▪ State space: All possible combinations of all possible values of the
storage elements and input vectors within the RTL HDL model. →
astronomical number of states…

▪ Some of the states are erroneous; incorrect behavior can be observed

▪ Functional verification shall find the erroneous states

• Usually it cannot be proved that the model is correct (state space is too large)

• Verification must be continued, until the next revealed bug „doesn’t worth it”

Functional Verification Basics

10

Stimuli generation

▪ Directed tests: Specific excitation patterns are manually generated,
according to the requirements

• it can only find the bugs, which are specifically expected by the verification
engineer

▪ Random tests: Efficiency can be improved by generating many „similar”
excitation patters with random data.

• Constrained random tests: Random testing efficiency decreases as the
number of states increases. Limiting the state space improves the efficiency
of random testing.

Functional Verification Basics

11

Stimuli generation – example

▪ DUV: an RTL model dividing two unsigned numbers

▪ Stimuli generation practice

• Directed tests for initial functional checks: checking reset, host interface
hand-shake, enable signals, etc…

• Automated random tests for improving state coverage efficiently: generate
test cases using the host interface excitation pattern with many pairs of
random operands

• Directed tests for covering corner cases: check the „exceptional” behavior by
formalizing a directed tests with the divisor set to zero.

12

SELF-CHECKING TESTBENCHES

Functional Verification Basics

13

Beyond the waveform – increasing the automation

▪ The excitation patterns are generated manually

▪ A model’s responses are checked in the waveform

▪ Problems

• As complexity increases, the waveform becomes unmanageable

• Waveform analysis is very time-consuming

• In case of RTL model changes, ALL responses shall be checked again!

▪ Solution: increase the automation!

• Self-checking testbenches

• Automated regression testing

Functional Verification Basics

14

Beyond the waveform – increasing the automation

▪ Self-checking testbenches & regression testing

• the testbenches include code snippets, which observe the DUV’s output(s)
and check the behavior against the specification (the checks are high-level,
formal models of the specification)

• if the RTL model is changed (e.g. bugfix), all tests shall be performed again
(regression testing) to ascertain that previously checked features are intact

• with self-checking testbenches, regression testing can be done automatically
by scripts

-- check #2: After generating a request, the ready output
-- of the FSM shall become deasserted at the next rising
-- edge of the clock.
L_CHECK_2: process
begin

wait until rising_edge(request);
wait for clk_period + 1 ns;
if (ready /= '0') then

report "-----------------------> check #2 FAIL";
wait;

end if;

report "-------------------------> check #2 PASS";
wait;

end process;

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

End of topic

Key concepts

▪ The digital design flow relies on the correctness of the RTL
HDL models – functional verification is an essential, but time-
consuming (expensive) process

▪ Three players; system engineer / architect, RTL designer,
verification engineer – functional verification is about to
achieve consensus among them regarding the functionality to
minimize failure probability

▪ To increase verification productivity

▪ automated regression testing is unavoidable

▪ self-checking testbenches are needed

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Questions

▪ Who are the three stakeholders in the design flow? What is
the purpose of the functional verification?

▪ What are the three types of verification from the accessibility
perspective? What is the main difference between them?

▪ What methods are available to apply stimuli to a DUV (design
under verification)?

▪ What tools and methods are available for the verification
engineer, to check the behavior of the DUV, and if it works as
expected? Is it possible to automate this process?

17

QUALIFYING THE VERIFICATION PROCESS

Functional Verification Basics

18

Qualifying the verification process

▪ Functional verification cannot prove if a design is “correct”

• What terminates the process?

▪ There are always some limiting factors

• Time

• Money

HDL-module chip system customer

time

Functional verification
Cost of

correcting an
error

number of detected
errors

Functional Verification Basics

19

Qualifying the verification process

▪ There is a need to ‘measure’ the verification progress

▪ Number of discovered errors per time period?
• Not an objective measurement

• But it make sense when other metrics are met

▪ Some objective metrics, e.g. code coverage?

• Code coverage percentage does not correlate well with discovered errors

• Errors still can be revealed after achieving 100% code coverage

• But low code coverage indicates that the test sequence should be extended

• Functional coverage

• Which features of the design is verified by simulation?

• Features are determined from the specification

• The coverage percentage can be collected automatically but the features are
derived from the specification by an engineer (=human)

Functional Verification Basics

20

Qualifying the verification process

▪ There is more than one type of code coverage

• Statement (assignment, instantiation)

• Branch (if … else …)

• Condition (which condition triggered the branch)

• if x=3 or y=3 then …

• Expression

• a <= (b or c) and (d or e);

• Finite State Machine (FSM)

• State coverage

• State transition coverage

Functional Verification Basics

21

Qualifying the verification process

▪ Code coverage can be collected automatically during simulation

▪ Achieving 100% code coverage is almost impossible

• In some cases it may be unnecessary

• Statement cov.: e.g. generic parameters and their effect on the DUV/circuit

• State transition coverage: async reset from every other state

▪ Exclusion to code coverage may be added if it is justified

• Every exclusion needs to be explicitly justified!

▪ Spoiler: achieving ~100% code coverage does not mean that the RTL
model is bug free

Functional Verification Basics

22

Qualifying the verification process

▪ Functional coverage collected semi-automatically

• Which features are covered by simulation?

▪ What is a feature? -> determined by an engineer, from the specification

• e.g. the module shall have UART transceiver with specific baud rate, etc.

▪ Coverage can be assessed by implementing checks, that verifies some
part of the feature

• A set of checks can verify a feature

▪ Simulator tool may help collecting the necessary information

• e.g. QuestaSim

23

REUSABILITY IN VERIFICATION

Functional Verification Basics

24

Reusability in verification

▪ How to lower the verification effort?

• Create and reuse reusable verification components ☺

▪ What makes a component reusable?

• The component models some standard behavior

• CRC/parity calculation

• UART frame generation

• External devices’ behavior model

• Basically a component can be reused if it implements some non design
specific behavior and it has standard interfaces

▪ The bigger the reusable components, the better…

• Implementing a parity bit calculator is not a huge effort

Functional Verification Basics

25

Reusability in verification

▪ Test sequence generating a single UART frame
(…)
rx <= '0'; wait for 8.67 us; -- start bit
rx <= '1'; wait for 8.67 us; -- bit 0
rx <= '0'; wait for 8.67 us; -- bit 1
rx <= '1'; wait for 8.67 us; -- bit 2
rx <= '1'; wait for 8.67 us; -- bit 3
rx <= '0'; wait for 8.67 us; -- bit 4
rx <= '1'; wait for 8.67 us; -- bit 5
rx <= '0'; wait for 8.67 us; -- bit 6
rx <= '0'; wait for 8.67 us; -- bit 7
rx <= '1'; wait for 8.67 us; -- parity bit
rx <= '1'; wait for 8.67 us; -- stop bit
(…)

▪ Hand-crafted frame

• Low reusability

• Replicating the test sequence -> Copy & Paste

• Error prune

Functional Verification Basics

26

Reusability in verification

▪ Better approach is to implement “something”, that will generate the
UART frame

• A simple “function call” should replace the hand-crafted mess

• VHDL: procedure, SystemVerilog: task

▪ ‘Bus’ functional model (BFM)

• Replicates the UART signal waveform
procedure uart_8o1_transmitter_bfm (

data: in std_logic_vector (7 downto 0);
signal tx: out std_logic

) is
variable P: std_logic := '0';

begin
tx <= '0'; -- start bit
for i in 0 to 7 loop -- data bits

tx <= data(i);
P := P xor data(i);
wait for 8.67 us;

end loop;
tx <= not P; -- odd parity bit
wait for 8.67 us;
tx <= '1'; -- stop bit
wait for 8.67 us;

end procedure;

▪ One of the simplest reusable
component

▪ Not generic

• Other than 8 data bits?

• Even parity?

• Different baud rate?

▪ Could be improved

Functional Verification Basics

27

Reusability in verification

▪ There are frameworks, which helps implementing reusable components
and reusable verification environments

• Universal/Unified Verification Methodology (UVM)

• SystemVerilog framework

• Universal VHDL Verification Methodology (UVVM)

• VHDL framework

▪ Raise the testbenches’ abstraction level

• Transaction level modeling (TLM)

• Test sequence and the DUV does not interact directly

• Test sequence contains a list of commands, and abstract verification
components executes them

• (continued on next slide)

Functional Verification Basics

28

Reusability in verification

▪ Raise the testbenches abstraction level

• Transaction level modeling (TLM)

• Test sequence and the DUV does not interact directly

• Test sequence contains/generates a list of commands, and abstract
verification components executes them

• Predictor is a reference model which provides the expected responses to the
scoreboard

• Scoreboard stores the stimuli and responses from the DUV and the predictor

Testbench

Monitor VC

Monitor VC

Driver VC

Driver VC
stimuli responseRTL

model

Test sequencer predictor

Scoreboard

Functional Verification Basics

29

Systematic functional verification

▪ Using all the methods and tools mentioned earlier

• Systematic -> the verification process is documented and followed during the
design cycle

▪ There is a plan on how the design will be
verified – verification plan

• What tools and frameworks will be used for
functional verification

• What verification components will be used

• How is the quality of the verification measured

• What is the stopping criteria of the verification
process

• Additional information

• How the CDC issues will be investigated

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

End of topic

Key concepts

▪ Complex verification environments

▪ Self checking testbenches

▪ Randomized stimuli

▪ Behavior models of the DUV’s environment

▪ Qualifying the verification process

▪ Code coverage

▪ Functional coverage

▪ Reusability

▪ Reducing the effort by re-using verification IPs

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Questions

▪ Describe the verification process! How the progress can be
measured and what is the stopping criteria?

▪ Why is it impossible to prove a design “correctness” with
functional verification?

▪ Why is the functional verification expensive? How can the
verification effort be reduced?

▪ Describe an advanced verification environment!

