
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Verification Laboratory

Functional verification in practice

Dr. Lázár Jani, Dr. Péter Horváth

Department of Electron Devices, 2022



2

DESIGN UNDER VERIFICATION



Functional verification in practice

3

RTL model

“Customer” provided the following list of requirements
1. Low-active asynchronous reset signal

2. 50 MHz clock frequency

3. UART transmission

a) Data coded by the switches shall be transmitted on a press of a button

b) UART frame shall be 8O1, baud rate 115.2 kbps

c) The input shall be debounced: half period < 450 us, bouncing delay < 2 ms

4. UART reception

a) UART frame shall be 8O1, baud rate 115.2 kbps

b) Display shall be updated only if the unsigned value of the received data’s upper 3 bits is larger than the lower 
5 bits’ value

c) Display shall be dimmed on parity error

Requirements

UART 
transmitter

UART receiver

Switches

DecodeDisplay



Functional verification in practice

4

RTL model in more detail
Req 1.: Low-active asynchronous reset signal



Functional verification in practice

5

RTL model in more detail
Req 3.: UART transmission
a) Transmission shall occur by pressing a button
b) UART frame 8O1
c) Debouncing



Functional verification in practice

6

RTL model in more detail
Req 4.: UART reception
a) UART frame 8O1
b) Data displayed if upper 3 bits > lower 5 bits
c) Display dimmed on parity error



Functional verification in practice

7

Starting QuestaSim

▪ OpenSUSE Tumbleweed

▪ Open a terminal (Ctrl+Alt+t)

• Type the following command: /eda/run_centos

▪ Download the source codes and save it here: /home/x11Docker/

▪ Extract the archive

▪ Create a new project in QuestaSim

▪ Add existing source files to the project



8

FIRST TESTBENCH



Functional verification in practice

9

“Hand crafted” stimuli

▪ Hand crafted testbench

• Stimuli implemented manually

• Checks were implemented for a specific stimuli

▪ Lots of copy and paste code

• Software developer instinct suggest something is wrong

-- send 0x2D
rx <= '0'; wait for 8.67 us; -- start bit
rx <= '1'; wait for 8.67 us; -- bit 0
rx <= '0'; wait for 8.67 us; -- bit 1
rx <= '1'; wait for 8.67 us; -- bit 2
rx <= '1'; wait for 8.67 us; -- bit 3
rx <= '0'; wait for 8.67 us; -- bit 4
rx <= '1'; wait for 8.67 us; -- bit 5
rx <= '0'; wait for 8.67 us; -- bit 6
rx <= '0'; wait for 8.67 us; -- bit 7
rx <= '1'; wait for 8.67 us; -- parity bit
rx <= '1'; wait for 8.67 us; -- stop bit



Functional verification in practice

10

“Hand crafted” stimuli

▪ Interpreting the output data may be difficult

• Are the seven segment display signal values correct?

• Are the received UART frame correct (e.g. parity bit)?

if tx /= '0' then report "Check # 2: TX LSB ERROR";
else report "Check # 2: TX LSB OK"; end if; -- LSB
wait for 8.67 us;
if tx /= '1' then report "Check # 2: TX 2nd bit ERROR";
else report "Check # 2: TX 2nd bit OK"; end if;
wait for 8.67 us;
if tx /= '0' then report "Check # 2: TX 3rd bit ERROR";
else report "Check # 2: TX 3rd bit OK"; end if;
wait for 8.67 us;
if tx /= '1' then report "Check # 2: TX 4th bit ERROR"; 
else report "Check # 2: TX 4th bit OK"; end if;
wait for 8.67 us;
if tx /= '0' then report "Check # 2: TX 5th bit ERROR";
else report "Check # 2: TX 5th bit OK"; end if;
wait for 8.67 us;
if tx /= '1' then report "Check # 2: TX 6th bit ERROR";
else report "Check # 2: TX 6th bit OK"; end if;
wait for 8.67 us;
if tx /= '1' then report "Check # 2: TX 7th bit ERROR";
else report "Check # 2: TX 7th bit OK"; end if;
wait for 8.67 us;
if tx /= '1' then report "Check # 2: TX MSB ERROR"; 
else report "Check # 2: TX MSB OK"; end if; -- MSB



11

IMPROVING THE TESTBENCH



Functional verification in practice

12

Improving the verification environment

▪ Using the knowledge from ‘Systematic Functional Verification’ lecture

▪ Implement reusable verification components

• UART frame generator and decoder

• Seven segment display decoder

• Bouncing button behavior model

▪ Update the testbench to use the reusable components

Testbench

UART frame decoder

Seven segment display 
decoder

UART frame 
generator

Button model

stimuli response

RTL
model

Test sequencer



Functional verification in practice

13

UART frame generator and decoder

▪ Generator requirements to improve reusability

• Variable number of data bits

• Odd/even or no parity bit

• Length of stop bit (not implemented)

• Configurable baud delay

• Error injection

▪ Decoder requirements

• Variable number of data bits

• Odd/even or no parity bit

• Configurable baud delay



Functional verification in practice

14

Seven segment display decoder

▪ Decode the display’s input

• ‘0’ means the segment is enabled

• HEX characters only

function seven_segment_decoder(
data: std_logic_vector(7 downto 0)) 

return std_logic_vector is
variable result: std_logic_vector(3 downto 0);

begin

case data is
when B"11000000" => result := X"0";
when B"11111001" => result := X"1";
when B"10100100" => result := X"2";
when B"10110000" => result := X"3";
when B"10011001" => result := X"4";
when B"10010010" => result := X"5";
when B"10000010" => result := X"6";
when B"11111000" => result := X"7";
when B"10000000" => result := X"8";
when B"10010000" => result := X"9";
when B"10001000" => result := X"A";
when B"10000011" => result := X"B";
when B"11000110" => result := X"C";
when B"10100001" => result := X"D";
when B"10000110" => result := X"E";
when B"10001110" => result := X"F";
when others => result := (others => 'X');

end case;

return result;
end function;



Functional verification in practice

15

Bouncing button behavior model

▪ Configurable timing

• Period length

• Number of bouncing

procedure bouncing_button(
period: in time;
number: in positive;
signal button: out std_logic

) is

begin

for i in 0 to number-1 loop
button <= not button;
wait for period;

end loop;

end procedure;



16

SIMULATION WITH CODE COVERAGE



Functional verification in practice

17

Compile the source code

▪ Compile settings needs to be modified to enable coverage data collection

• Select the design source files (everything but the testbench and verification 
package)

• Right click -> Compile -> Compile properties, Coverage tab



Functional verification in practice

18

Starting the simulation

▪ Start simulation

• Select the testbench as before

• On Others tab, coverage collection also should be enabled



Functional verification in practice

19

Starting the simulation

▪ After starting the simulation, the window should look similar to this

• There are some new tabs dedicated to code coverage analysis



Functional verification in practice

20

Running the simulation

▪ Load the wave.do as before to add signals to the waveform

• File -> Load -> Macro File, select wave.do

▪ Run the simulation for 5 ms!



Functional verification in practice

21

Evaluating the result

▪ Check the coverage information in the Files tab

• By selecting one file, we can examine the coverage in detail in the Analysis tab



Functional verification in practice

22

Evaluating the result

▪ What parts of the design were not tested?

• Open the files, code coverage information is next to the line number

▪ Is it possible to add more test case to achieve 100% coverage?

• No, but why?

• How could we still test those parts?

▪ We can still improve the coverage, check what functionality was not 
tested



Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

End of topic

Key concepts

▪ Complex testbenches utilizes higher abstraction level 
implementation of the test environment

▪ Verification components can help improving the productivity

▪ Verification components can be re-used across projects

▪ Code coverage can help uncover untested parts of the design, but 
should not be used as sole metric of the verification process


