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DESIGN UNDER VERIFICATION
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RTL model

“Customer” provided the following list of requirements
1. Low-active asynchronous reset signal

2. 50 MHz clock frequency

3. UART transmission

a) Data coded by the switches shall be transmitted on a press of a button

b) UART frame shall be 8O1, baud rate 115.2 kbps

c) The input shall be debounced: half period < 450 us, bouncing delay < 2 ms

4. UART reception

a) UART frame shall be 8O1, baud rate 115.2 kbps

b) Display shall be updated only if the unsigned value of the received data’s upper 3 bits is larger than the lower 
5 bits’ value

c) Display shall be dimmed on parity error

Requirements

UART 
transmitter

UART receiver

Switches

DecodeDisplay
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RTL model in more detail
Req 1.: Low-active asynchronous reset signal
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RTL model in more detail
Req 3.: UART transmission
a) Transmission shall occur by pressing a button
b) UART frame 8O1
c) Debouncing
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RTL model in more detail
Req 4.: UART reception
a) UART frame 8O1
b) Data displayed if upper 3 bits > lower 5 bits
c) Display dimmed on parity error
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Starting QuestaSim

▪ OpenSUSE Tumbleweed

▪ Open a terminal (Ctrl+Alt+t)

• Type the following command: /eda/run_centos

▪ Download the source codes and save it here: /home/x11Docker/

▪ Extract the archive

▪ Create a new project in QuestaSim

▪ Add existing source files to the project
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FIRST TESTBENCH
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“Hand crafted” stimuli

▪ Hand crafted testbench

• Stimuli implemented manually

• Checks were implemented for a specific stimuli

▪ Lots of copy and paste code

• Software developer instinct suggest something is wrong

-- send 0x2D
rx <= '0'; wait for 8.67 us; -- start bit
rx <= '1'; wait for 8.67 us; -- bit 0
rx <= '0'; wait for 8.67 us; -- bit 1
rx <= '1'; wait for 8.67 us; -- bit 2
rx <= '1'; wait for 8.67 us; -- bit 3
rx <= '0'; wait for 8.67 us; -- bit 4
rx <= '1'; wait for 8.67 us; -- bit 5
rx <= '0'; wait for 8.67 us; -- bit 6
rx <= '0'; wait for 8.67 us; -- bit 7
rx <= '1'; wait for 8.67 us; -- parity bit
rx <= '1'; wait for 8.67 us; -- stop bit
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“Hand crafted” stimuli

▪ Interpreting the output data may be difficult

• Are the seven segment display signal values correct?

• Are the received UART frame correct (e.g. parity bit)?

if tx /= '0' then report "Check # 2: TX LSB ERROR";
else report "Check # 2: TX LSB OK"; end if; -- LSB
wait for 8.67 us;
if tx /= '1' then report "Check # 2: TX 2nd bit ERROR";
else report "Check # 2: TX 2nd bit OK"; end if;
wait for 8.67 us;
if tx /= '0' then report "Check # 2: TX 3rd bit ERROR";
else report "Check # 2: TX 3rd bit OK"; end if;
wait for 8.67 us;
if tx /= '1' then report "Check # 2: TX 4th bit ERROR"; 
else report "Check # 2: TX 4th bit OK"; end if;
wait for 8.67 us;
if tx /= '0' then report "Check # 2: TX 5th bit ERROR";
else report "Check # 2: TX 5th bit OK"; end if;
wait for 8.67 us;
if tx /= '1' then report "Check # 2: TX 6th bit ERROR";
else report "Check # 2: TX 6th bit OK"; end if;
wait for 8.67 us;
if tx /= '1' then report "Check # 2: TX 7th bit ERROR";
else report "Check # 2: TX 7th bit OK"; end if;
wait for 8.67 us;
if tx /= '1' then report "Check # 2: TX MSB ERROR"; 
else report "Check # 2: TX MSB OK"; end if; -- MSB
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IMPROVING THE TESTBENCH
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Improving the verification environment

▪ Using the knowledge from ‘Systematic Functional Verification’ lecture

▪ Implement reusable verification components

• UART frame generator and decoder

• Seven segment display decoder

• Bouncing button behavior model

▪ Update the testbench to use the reusable components

Testbench

UART frame decoder

Seven segment display 
decoder

UART frame 
generator

Button model

stimuli response

RTL
model

Test sequencer
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UART frame generator and decoder

▪ Generator requirements to improve reusability

• Variable number of data bits

• Odd/even or no parity bit

• Length of stop bit (not implemented)

• Configurable baud delay

• Error injection

▪ Decoder requirements

• Variable number of data bits

• Odd/even or no parity bit

• Configurable baud delay
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Seven segment display decoder

▪ Decode the display’s input

• ‘0’ means the segment is enabled

• HEX characters only

function seven_segment_decoder(
data: std_logic_vector(7 downto 0)) 

return std_logic_vector is
variable result: std_logic_vector(3 downto 0);

begin

case data is
when B"11000000" => result := X"0";
when B"11111001" => result := X"1";
when B"10100100" => result := X"2";
when B"10110000" => result := X"3";
when B"10011001" => result := X"4";
when B"10010010" => result := X"5";
when B"10000010" => result := X"6";
when B"11111000" => result := X"7";
when B"10000000" => result := X"8";
when B"10010000" => result := X"9";
when B"10001000" => result := X"A";
when B"10000011" => result := X"B";
when B"11000110" => result := X"C";
when B"10100001" => result := X"D";
when B"10000110" => result := X"E";
when B"10001110" => result := X"F";
when others => result := (others => 'X');

end case;

return result;
end function;
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Bouncing button behavior model

▪ Configurable timing

• Period length

• Number of bouncing

procedure bouncing_button(
period: in time;
number: in positive;
signal button: out std_logic

) is

begin

for i in 0 to number-1 loop
button <= not button;
wait for period;

end loop;

end procedure;
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SIMULATION WITH CODE COVERAGE
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Compile the source code

▪ Compile settings needs to be modified to enable coverage data collection

• Select the design source files (everything but the testbench and verification 
package)

• Right click -> Compile -> Compile properties, Coverage tab
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Starting the simulation

▪ Start simulation

• Select the testbench as before

• On Others tab, coverage collection also should be enabled
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Starting the simulation

▪ After starting the simulation, the window should look similar to this

• There are some new tabs dedicated to code coverage analysis
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Running the simulation

▪ Load the wave.do as before to add signals to the waveform

• File -> Load -> Macro File, select wave.do

▪ Run the simulation for 5 ms!
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Evaluating the result

▪ Check the coverage information in the Files tab

• By selecting one file, we can examine the coverage in detail in the Analysis tab
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Evaluating the result

▪ What parts of the design were not tested?

• Open the files, code coverage information is next to the line number

▪ Is it possible to add more test case to achieve 100% coverage?

• No, but why?

• How could we still test those parts?

▪ We can still improve the coverage, check what functionality was not 
tested
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End of topic

Key concepts

▪ Complex testbenches utilizes higher abstraction level 
implementation of the test environment

▪ Verification components can help improving the productivity

▪ Verification components can be re-used across projects

▪ Code coverage can help uncover untested parts of the design, but 
should not be used as sole metric of the verification process


