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1.  Introduction 
When analyzing semiconductor devices, the traditional approach is to assume that carriers scatter 
frequently from ionized impurities, phonons, surface roughness, etc. so that the average distance 
between scattering events (the so-called mean-free-path, λ) is much shorter than the device.  
When these conditions hold, we can describe carrier transport with drift-diffusion equations.  
The traditional derivation of the MOSFET I-V characteristic above threshold assumes that the 
drift current dominates [1].  For the subthreshold current, we usually assume that diffusion 
dominates [2].  Numerical simulation programs include both drift and diffusion under all bias 
conditions (e.g. MINIMOS [3]).  As devices shrink, however, we should consider the possibility 
that the device dimensions become comparable to the mean-free-path for scattering.  In the limit, 
L << λ, where the channel length is much shorter than the mean-free-path, we can ignore 
scattering completely.  In this case, a MOSFET would operate more like a vacuum tube than like 
a conventional semiconductor device.  In practice, scattering always occurs, but it is common 
now for the critical, current-limiting part of the device to be comparable in size to a mean-free-
path.  Modern devices, therefore, operate between the drift-diffusion and ballistic regimes.  Drift-
diffusion theory is no longer strictly valid, but it continues to provide insights into the operation 
of small semiconductor devices. A ballistic treatment is not strictly valid either, but it provides 
new insights that may prove useful as MOSFETs are scaled to their limits and as new devices are 
explored.  The modern device engineer should be familiar with both approaches.  In these notes, 
we develop a simple theory for the ballistic MOSFET. 
 
2.  The MOSFET as a Bipolar Transistor 
Figure 1 is an energy band diagram of a MOSFET along the channel from the source to the drain 
with a large drain voltage applied.  We see that there is an energy barrier between the source and 
the drain, and that the energy barrier prevents current flow.  In a bipolar transistor, which has a 
similar energy band diagram, a positive base-emitter voltage lowers the height of the barrier and 
allows the current to increase exponentially.  The MOSFET works the same way, except that the 
height of the barrier is modulated indirectly by a gate voltage.  A positive gate voltage pushes the 
energy barrier down and allows current to flow.  This analogy to the bipolar transistor is often 
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invoked below threshold, but it also applies above threshold [4].  The analogy to the bipolar 
transistor highlights the importance of the top of the energy barrier, which will play a central role 
in our theory of the ballistic MOSFET. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 Electron energy vs. position for an n-channel MOSFET.  A high gate voltage is assumed, and the gate 

voltage is the parameter. 
 
 
2.  Generic Model for a Nanotransistor 
Figure 2 shows a simple, generic model for a nanodevice [5].  The device consists of two 
contacts where strong scattering maintains thermal equilibrium.  The left contact, the source, has 
a Fermi level of E

F1
 and the right contact, the drain, a Fermi level of E

F2
= E

F1
! qV

D
.  In 

equilibrium, these two Fermi levels are equal, but under bias they split.  The two contacts are 
connected to the intrinsic device, which we describe by a density-of-states.  A third terminal, the 
gate, is used to move the energy states in the device up and down through the self-consistent 
potential. 
 
Figure 3 illustrates how we think about a ballistic transistor in terms of the model device of Fig. 
2.  We consider the region at the top of the barrier (we give it a length, L ) as the intrinsic device.  
The energy barriers between this region to the source and the drain are the “contacts” that allow 
carriers to enter and leave from the source and drain.  The electronic states at the top of the 
barrier are filled and emptied from the source and drain, and these states are raised and lowered 
by the potential on the gate electrode.  In the simplest case, we’ll assume a parabolic E(k) near 
the top of the barrier, and for a planar MOSFET, the two-dimensional density-of-states will be 
 

 
  

D
2D
(E) =WL

m
*

!!
2
" E # E

C( ) , (1) 

 
where Θ is the unit step function, and EC is the bottom of the first subband.  (For simplicity in 
these notes, only a single subband is assumed.)  For a nanowire transistor, we would use a one-
dimensional density-of-states.  Note that we have multiplied by W and L  because we are 
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interested in the total number of states at energy, E, not the number of states per unit area.  For a 
nanowire transistor, we would use a one-dimensional density-of-states.  We could use any E(k) 
and the corresponding density-of-states.  The method is very general.  For a molecular transistor, 
for example, it would not be possible to define an E(k).  For such a case, the density-of-states 
would simply refer to a set of broadened set of molecular levels.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Generic model for a nanodevice.  (After [5]) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 Representation of a MOSFET in terms of the generic model. 
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Consider first the case where only the left contact is attached.  Contact 1 would fill up the device 
according to the Fermi level of contact 1. We describe this filling up process with a simple rate 
equation, 

 dN(E)

dt
=
N
1

0
(E) ! N(E)

"
1

, (2) 

where 
 N

1

0
(E) = D(E ! EC ) f1(E)  (3) 

is the equilibrium number of electrons in the device at energy, E, and 

� 

!
1
 is a characteristic time 

that describes how fast carriers enter the device from contact 1 or leave the device through 
contact 1.  Equation (2) states that if the number of electrons in the device is less than the number 
that contact would like to see in the device, then N(E) increases with time as carriers from the 
source enter and fill up states in the device.  If the number is greater than the equilibrium 
number, then N(E) decreases with time as carriers leave the device through contact 1. 

Similarly, if only the right contact is connected to the device, then contact 2 would try to fill up 
the device according to its Fermi level, and we describe this filling up process by 

 dN(E)

dt
=
N
2

0
(E) ! N(E)

"
2

, (4) 

where 
 N

2

0
(E) = D(E ! EC ) f2 (E)  (5) 

is the equilibrium number of electrons in the device at energy, E, and 

� 

!
2
 is a characteristic time 

that describes how fast carriers enter the device from contact 2 or leave the device through 
contact 2.  In general, both contacts are attached, so the rate equation for N(E) becomes 

 
dN(E)

dt
=

N
1

0
(E) ! N(E)( )

"
1

+
N
2

0
(E) ! N(E)( )

"
2

. (6) 

Under steady-state, non-equilibrium conditions,  

 

� 

dN(E)

dt
= 0 , (7) 

and we can solve eqns. (6) and (7) for the steady-state number of electrons in the device as 

 

� 

N(E) = D
1
(E) f

1
(E) + D

2
(E) f

2
(E)  (8) 

where 

 D
1
E( ) !

"
2

"
1
+ "

2

D E # E
C( ) =

$
1

$
1
+ $

2

D E # E
C( )  (9a) 

 D
2
E( ) !

"
1

"
1
+ "

2

D E # E
C( ) =

$
2

$
1
+ $

2

D E # E
C( ) . (9b) 

The quantity, D1 is the density-of-states fillable by contact 1 and D2 is the density-of-states 
fillable by contact 2.  Note that when 

� 

!
2
"#, 

� 

D
2
(E)! 0 , and all of the states are filled 

according to the Fermi function in contact 1.  Conversely, when 

� 

!
1
"# , 

� 

D
1
(E)! 0 , and all of 
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the states are filled according to the Fermi function in contact 2.  When 

� 

!
1

= !
2
, one-half of the 

states are filled according to the Fermi function on contact 1 and one-half according to the Fermi 
function in contact 2.  The parameters,  

 

!
1
"
!

#
1

 (10a) 

 

!
2
"
!

#
2

, (10b) 

with units of energy are alternative ways of describing the connections to the contacts.  
Physically, they represent the broadening of the energy levels in the device. 

To understand why the density-of-states splits into two components examine Fig. 4, which shows 
a simple, parabolic E(k) for the device.  In the ballistic device, electrons flow in contact 1 and out 
from contacts 1 and 2.  They also flow in from contact 2 and out from contacts 1 and 2.  At the 
top of the barrier, electrons that came from the source have positive velocities and those that 
came from the drain have negative velocities.  The positive velocity states (+k) can only be 
populated from the source, and the negative velocity states (-k) can only be populated from the 
drain.  The source and drain each have one-half of the states available, and they populate their 
half according to their Fermi levels.  The same approach applies to molecular levels in a 
molecular transistor, even though the concept of a bandstructure with an E(k) does not apply.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 Illustration of how states at the top of the barrier are filled according to the source and drain Fermi levels. 
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Finally, we integrate over energy to find the total number of electrons in the device as 
 

 N = N(E)dE! = D
1
(E) f

1
(E) + D

2
(E) f

2
(E)[ ]dE! . (11) 

 
Equation (11) is just like the conventional expression for computing carrier densities [1], except 
that in this case, we have two different Fermi levels and two different densities-of-states.  Note 
that the non-equilibrium carrier densities are determined two different equilibrium Fermi levels.  
Under steady-state conditions, the number of electrons in the device is determined by a 
competition between what each of the two contacts would like it to be.  To maintain this steady 
state, there is a continual flow of electrons in one contact and out of the other.  The steady-state 
current is 
 

 I E( ) =
q N

1

0
(E) ! N(E)( )
"
1

=
q N

2

0
(E) ! N(E)( )
"
2

. (12) 

 
Because we have solved for N, we can use eqn. (8) in (11) to find 
 

 I(E) = q
D E( )

!
1
+ !

2

"
#
$

%
&
'
f
1
(E) ( f

2
(E)[ ] =

2q

h
M (E) f

1
(E) ( f

2
(E)[ ] , (13) 

 
where 
 

 
 

M (E) !
h

2 "
1
+ "

2( )
D(E) =

h#
1
#
2

2 #
1
+ #

2( )
D(E)

!
. (14) 

 
The total current is obtained by summing the contributions from all energies, 
 

 I = I(E)dE! =
2q

h
M (E) f

1
(E) " f

2
(E)[ ]dE! . (15) 

 
Current flows when there is a difference of Fermi levels.  The parameter, M, is particularly 
simple for a one-dimensional density-of-states.  For such a case, 

    

� 

D(E) = 2L ! !"  and 
  

� 

!
1

= !
2

= L " , and we find 

� 

M =1.  We interpret M as the number of propagating modes that 
carry current.  Equation (15) is the well-known Landauer-Büttiker formula for mesoscopic 
devices, assuming a transmission, T E( ) = 1 [6]. 
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3.  Application to a Ballistic MOSFET 
To evaluate the I-V characteristics of a MOSFET, we first compute the number of electrons in 
the device from eqn. (11) and then the current from (15).  Assuming τ1 = τ2 and using eqn. (1) 
for the two-dimensional density-of-states in eqn. (11), we have 
 

 
    

� 

N =
m
*

2! !2
WL f

1
(E) + f

2
(E)[ ]

EC

"

# dE . (16) 

 
Consider the first integral, 
 

 

� 

f
1
(E)[ ]

EC

!

" dE =
dE

1+ e
E#EF 1( ) / kBT

EC

!

" . 

 
With a change of variables, 

� 

! = E " E
C( ) k

B
T , we find 

 

 
 

f1(E)[ ]
EC

!

" dE = kBT
d#

1+ e
#$#F1

0

!

" = kBT ln 1+ e
#F1( ) % kBTF0 #F1( ) , 

 
where 

� 

!
F1
" E

F1
# E

C( ) k
B
T  and   

� 

F
0
!
F1( )  is the Fermi-Dirac integral of order zero.  For future 

reference, recall that for a nondegenerate semiconductor (

� 

!
F

<< 0 ), 
  

� 

F j !F( ) " e
!F for any order, 

j, of the Fermi-Dirac integral.  Note also, that 
 
F
0
!
F1( ) = ln 1+ e!F1( ) , but for other orders we 

need to numerically evaluate the integral [12].  Finally, returning to eqn. (16), we find the 
number of electrons in the device to be 
 

 
  

� 

N =
N
2D
WL

2
F
0
!
F1( ) + F

0
!
F 2( )[ ] , (17) 

 
where 

 
  

� 

N
2D

=
m
*
k
B
T

! !
2

 (18) 

 
is the so-called effective density-of-states per m2. 
 
The next step is to compute the current from eqn. (15).  We begin with eqn. (14) and find 
 

 
  

M (E) !
hD(E)

2 "
1
+ "

2( )
=
h

4"

m
*
WL

#!
2

, (19) 

 
where we have assumed !

1
= !

2
= ! .  We evaluate τ from 
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! =
L

"
x

=
L

"cos#
=

L

2E / m
*
cos#

. (20) 

 
We have assumed that each contact is perfect and that electrons enter or leave the device limited 
only by the velocity that the bandstructure imposes.  Electrons are free to move in the x-y plane, 
and they enter the device with a spread of velocities, so we need to use the average velocity in 
the x-direction (or average cos θ).  From 
 

 

� 

cos! =
cos!d!

"#" / 2

+" / 2

$ =
2

"
 

 
and eqn. (20), we find 
 

 
  

� 

M(E) !
W 2m

*
E

" !
. (21) 

 
Finally, using eqn. (21) in eqn. (15), we find 
 

 
 

ID =
2q

h

W 2m
*
E

!!
EC

"

# f
1
(E) $ f

2
(E)[ ]dE . 

 
When we integrate 

� 

E  times a Fermi function, we get a Fermi-Dirac integral of order ½.  After 
performing the integral and collecting up the constants, we can write the result as 
 

 
  

� 

ID =
qN

2D

2
W!T F

1/ 2
("F1) #F

1/ 2
("F 2)[ ], (22) 

 
where 
 

 

� 

!
T

=
2k

B
T

"m
*

 (23) 

 
is a thermal velocity (twice the so-called Richardson thermal velocity). 
 
Equation (22) is eqn. (4) of ref. [10], but be careful about the ‘roman F’ and ‘script F’ definitions 
of the Fermi-Dirac integral!  Natori uses 
 

 F1/2 (!) "
#1/2d#

1+ exp(# $!)
0

%

&  (24a) 

 
but I use [12] 
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F1/2 (!) "
2

#

$1/2d$

1+ exp($ %!)
0

&

'  (24b) 

 
Let's pause and review what we have accomplished.  We first derived an expression for the 
number of electrons in a ballistic MOSFET, eqn. (17), 
 

  

� 

N =
N
2D

2
WL F

0
!
F1( ) + F

0
!
F 2( )[ ] , 

 
and then we derived an expression for the drain current, eqn. (22), 
 

 
  

� 

ID =
qN

2D

2
W!T F

1/ 2
("F1) #F

1/ 2
("F 2)[ ]. 

 
To get the I-V characteristics of the device, we add ideal, MOS electrostatics.  Above threshold, 
 
 

  

� 

CoxWL VGS !VT( ) = qN , (25) 
 
which can be used to solve eqn. (17) for 
 

 
  

� 

qN
2DW

2
=

WCox VGS !VT( )

F
0
"F1( ) + F

0
"F 2( )[ ]

. 

 
This expression can be used in eqn. (22) to find 
 

 
 

I
D
=WC

ox
!
T
V
GS

"V
T( )

F
1/2
(#

F1
) " F

1/2
(#

F2
)

F
0
#
F1( ) + F

0
#
F2( )

$

%
&

'

(
) , 

or 

 

  

ID =WCox
!!T VGS "VT( )

1"
F
1/2
(#F1 " qVD / kBT )

F
1/2
(#F1)

1+
F
0
#F1 " qVD / kBT( )

F
0
#F1( )

$

%

&
&
&
&

'

(

)
)
)
)

, (26) 

 
where 
 

 
  

!!
T
=

2k
B
T

"m
*

F
1/2
(#

F1
)

F
0
#
F1( )

 (27) 

 
is the so-called injection velocity, the average velocity at the top of the barrier.  Equations (26) 
and (27) do not provide a complete description of the I-V characteristic of the MOSFET because 
they are expressed in terms of !

F1
. The third equation allows us to find !

F1
by solving,  
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F
0
!F1( ) + F

0
!F1 " qVD / kBT( ) =

Cox VGS "VT( )
qN

2D 2
. (28) 

 
Equations (26) – (28) describe a ballistic MOSFET under the assumption of ideal (1D) MOS 
electrostatics and above threshold operation. 
Finally, note that we have assumed an E(k) with a single spherical valley.  For the silicon 
conduction band,  for example, there are multiple ellipsoidal valleys.  These results are readily 
extended for the silicon conduction band as described  in refs. [9, 10, 13]. 
 
4.  Subthreshold and 2D Electrostatics 
 
Equations (17) and (22) describe the MOSFET under subthreshold as well as above threshold 
conditions, if we properly relate the surface potential to the gate voltage.  The drain voltage can 
also affect the surface potential, and the resulting 2D electrostatics play an important role in the 
MOSFET.  The surface potential controls the location of the top of the barrier according to 
 

!F1 = EF1 " EC

FB
+ q# S( ) kB T , (29) 

 
where E

C

FB is the location of the top of the barrier under flat band conditions, which we take as 
the reference for !

S
= 0 .  In general, we need a 2D simulation to determine !

S
, but we can 

represent the effect of the terminal voltages on !
S

 by the equivalent circuit shown in Fig. 5.  
From this circuit, we find 
 

! S =
CG

C"

VG +
CG

C"

VD +
CG

C"

VS #
q N # N

0( )
C"

, (30) 

 
where 
 

C
!
= C

G
+ C

D
+ C

S
 (31) 

 
and N0 is  the carrier  density at  zero applied voltage and  zero  surface potential.  For the ideal 
case, C

D
= C

S
= 0 , and the surface potential is completely controlled by the gate voltage. 

 
Before we proceed, we should note that the charge in eqn. (30) is the mobile injected from the 
source and drain.  In a bulk MOSFET, the channel is heavily doped, and we should include a 
depletion charge.  For a uniformly doped substrate 
 

 
QD = 2q! S"0NA # S +VSB( )WL , 
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where VSB is the reverse bias (if any) between the source and the body.  In general, the depletion 
charge should be added to qN in eqn. (30), but we will not consider this complication in these 
notes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 A simple circuit to include the effect of the gate, drain, and source voltages on the surface potential.  
 
 
 
 
 
 
Using eqn. (30), the procedure for computing the I-V characteristic of a MOSFET is as follows 
[7]: 
 

1) Select a gate and drain voltage, VG and VD 
2) Guess the surface potential, !

S
 from which we determine, !

F1
 from eqn. (29) 

3) Evaluate N from eqn. (17) 
4) Determine an improved guess for !

S
 by inserting the value of N from step 3) in eqn. 

(30) 
5) Iterate between 3) and 4) until the surface potential converges to a fixed value 
6) Evaluate the drain current from eqn. (22) 
7) Go to 1) and repeat for another gate and drain voltage 
 

To reduce this procedure to practice, there are few additional questions.  First, how do we 
determine E

F1
! E

C

FB( ) , which we need to determine !
F1

 from eqn. (29)?  This parameter just 
sets the source to channel barrier height when VG = VD = 0.  It determines the off-current or, 
equivalently, the threshold voltage.  In practice, we set this parameter to a large negative value 
(several kBT/q in magnitude) to produce the desired off-current.  

CG 

VS VD 

CD 
CS 

VG 

� 

Q = !qN

!
S
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The next question is how to determine the three capacitors, CG, CD, and CS.  The first one is 
readily obtained 
 

 

C
G
=
!
OX
"
0

T
ox

WL . 

 
We also know that under subthreshold conditions, 
 

ID ! e
q" S /kBT , 

 
so 
 

!ID
!VG VD

" e
q# S /kBT

!# S

!VG
=
CG

C$

ID

kBT / q
, (32) 

 
where we have used eqn. (30) to evaluate the derivative.  Next, recall that according to standard 
MOSFET theory the subthreshold current varies as [2] 
 

ID ! e
qVG /mkBT , 

 
so 
 

!ID

!VG VD

" e
qVG /mkBT

q

mkBT
=
1

m

ID

kBT / q
. (33) 

 
Comparing eqns. (32) and (33), we conclude that 
 

1

m
=
C
G

C
!

. (34) 

 
The parameter, m, is related to the subthreshold swing, S,  of a transistor through [2] 
 

S = 2.3mkBT / q . (35) 
 

Finally, from eqns. (34) and (35), we find 
 

CG

C
!

=
2.3kBT / q

S
. (36) 
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The parameter, S, which gives the gate voltage swing needed to increase the subthreshold current 
by a factor of 10, is frequently known experimentally or from a 2D Poisson solution, so it 
provides us with a convenient way to determine C

G
C

!
. 

 
An increase in drain voltage shifts the threshold voltage to a lower value.  In a typical plot of 
log10 ID vs. VG at two different drain voltages, this is observed as a parallel shift of the 
subthreshold current vs. voltage plot.  The shift is call DIBL (drain-induced barrier lowering) and 
is measured in V/V (voltage of shift in gate voltage at a constant ID per volt of change in the 
drain voltage,  Beginning with 
 

ID ! e
q" S /kBT , 

 
we find 
 

! log10 ID
!VD VG

"
1

2.3kBT / q

!# S

!VD
=

1

2.3kBT / q

CD

C$

. 

 
For a given ΔVD, the increase in log10ID is 
 

! log10 ID =
!VD

2.3kBT / q

CD

C
"

, 

 
but we also know from standard MOSFET theory, that 
 

! log10 ID =
!V

G

S
. 

By equating these two expressions, we find 
 

 
CD

C
!

=
2.3kBT

q

DIBL

S
, (37) 

 
which allows us to estimate CD/CΣ from S and DIBL, which are frequently known. 
 
 
5.  Discussion 
Above threshold, Fermi-Dirac statistic must be used, but it is instructive to examine the final 
result for nondegenerate conditions where Fermi-Dirac integrals reduce to exponentials and eqn. 
(26) becomes 
 

 

I
D
=WC

ox
!
T
V
GS

"V
T( )
1" e#F 2 "#F1

1+ e
#F 2 "#F1

$

%
&

'

(
) . 
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Since the drain voltage lowers the Fermi level of the drain by 

� 

!qVDS
, we have 

� 

!F 2 "!F1 = qVDS kBT , and the final result for the nondegenerate, ballistic MOSFET is 
 

 

ID =WCox!T VGS "VT( )
1" e"qVDS /kBT

1+ e
"qVDS /kBT

#

$
%

&

'
( . (38) 

It is instructive to examine eqn. (38) under low drain bias.  If we expand the exponentials for 
small VDS, and collect some constants, we find 
 

� 

I
D

=
W

L
µ
Ball
C
ox
V
GS
!V

T( )VDS
, (39) 

 

� 

µBall !
L "T /2( )
kBT /q

. (40) 

 
Equation (39) is the conventional result, except that the effective mobility is replaced by a non-
physical “ballistic mobility.” The ballistic mobility is the expected expression for the mobility - 
except that the channel length replaces the mean-free-path.  Since our model transistor assumes 
that scattering occurs in the source and in the drain, it is reasonable to call L the mean-free-path 
for scattering in a ballistic MOSFET.  
 
For large VDS, eqn. (38) becomes 
 

� 

I
D

=WC
ox
!
T
V
GS
"V

T( ), (41) 
 
which shows that the saturated drain current increases linearly with 

� 

V
GS

!V
T( )rather than 

quadratically as in a simple MOSFET models.  We also see that the drain saturation voltage is a 
few kBT/q rather than 

� 

V
GS

!V
T( ). 

 
It’s worth pointing out that we can get eqn. (38) very simply.  In the ballistic case,  

Q(0) = q n
+
EF( ) + n!

(EF ! qVD )"# $% = Q
+
EF( ) +Q!

(EF ! qVD ) , (42) 
 

where we have assumed ideal, MOS electrostatics.  We can also write the current as 
 

ID = ! Q
+" + !Q!"!#$ %& = qn

+" +
1!

n
!"!

n
+" +

#

$
'

%

&
( . (43) 

 
By writing eqn. (42) as 
 

Q(0) = !qn+
1+

n
!

n
+

"

#
$

%

&
' , (44) 

 
solving for n+, and inserting the result in eqn. (43), we find 
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I
D
= !Q 0( )"T

1! n!
n
+#$ %&

1+ n
!
n
+#$ %&

, (45) 

 
where we have used the fact that ! +

= !
"
= !

T
 for a nondegenerate semiconductor.  Finally, by 

assuming ideal, MOS electrostatics, Q 0( ) !WC
ox
V
GS

"V
T( ) , and recognizing that for a 

nondegenerate semiconductor, n!
n
+
= e

!qVD /kBT , we obtain eqn. (38). 
 

The non-degenerate model is simple and gives some insight, but above threshold, degenerate 
statistics must be used.  Degenerate carrier statistics raise the injection velocity, increase the 
saturation voltage, and cause the saturated drain current to vary as 

� 

V
GS
!V

T( )
" , where 

� 

1< ! <1.5.  
In summary, the ballistic MOSFET model predicts I-V characteristics that look much like those 
of a conventional MOSFET.  In practice, we find that the magnitude of the current in a state-of-
the-art MOSFET is roughly 50% of the corresponding ballistic MOSFET. 
 
 
6.  Relation to traditional MOSFET theory 
The ballistic MOSFET is an idealization that does not occur in practice, but traditional MOSFET 
theory assumes channel lengths much longer than a mean-free-path for scattering, and that 
assumption has also become unrealistic.  The model presented here can be modified to include 
scattering and to derive the traditional MOSFET model.  Doing so by beginning from the 
ballistic perspective provides some new insights into MOSFET performance. 
 
According to eqn. (15), to evaluate the current, we need to specify M E( )  and therefore the 
escape times, !

1
+ !

2
.  In the presence of scattering, carriers will diffuse out of the device in a 

time 
 

!
1
= !

2
=

L
2

2Deff

, (46) 

 
where L is the channel length and Deff is the effective diffusion coefficient of carriers.  (Equation 
(46) is the same expression as for the transit time across the base of a bipolar transistor [1].)  
Using eqn. (46) in eqn. (19) for M, we find 
 

 

M =
W

L

hDeff

2

m
*

!!
2

, (47) 

 
which can be inserted in eqn. (15) to find the drain current as 
 

 
ID =

W

L
qN

2DDeff F
0
(!F1) " F

0
(!F2 )[ ] . (48) 
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Next, we should relate N2D to the carrier density in the channel, but we should not use eqn. (17).  
Equation (17) describes the filling of states in the ballistic case; positive k-states are filled from 
the source and negative k-states from the drain.  In the presence of strong scattering, all of the k-
states at the beginning of the channel are filled from the source – the +k states by direct injection 
from the source and the –k states by source-injected carriers that backscatter.  It is better, 
therefore, to write 
 

 
N = N

2DWL F
0
!F1( ) = Cox VGS "VT( )

WL

q
, (49) 

 
where the final term assumes ideal (above-threshold) MOS electrostatics.  By solving eqn. (49) 
for N2D in terms of VGS and inserting the result in eqn. (48), we find 
 

 

ID =
W

L
DeffCox VGS !VT( ) 1!

F
0
("F2 )

F
0
("F1)

#

$
%

&

'
( . (50) 

 
Equation (50) still looks much different than the traditional result, but if we assume non-
degenerate carrier statistics (so  F0

(!
F
)" e

!
F ), eqn. (50) becomes 

 

ID =
W

L
DeffCox VGS !VT( ) 1! e!qVD /kBT"# $% . (51) 

 
For small drain to source voltage, eqn. (51) becomes 
 

ID =
W

L

Deff

kBT q( )
Cox VGS !VT( )VD =

W

L
µeffCox VGS !VT( )VD , (52) 

 
which is the traditional result for low drain voltages [1]. 
 
For high drain voltages, eqn. (51) becomes 
 

 

ID =W
Deff

L
Cox VGS !VT( ) =W"diffCox VGS !VT( ) . (53) 

 
Note that we have replaced the channel length, L, with an effective length, L and defined a 
diffusion velocity, 

 
!diff = Deff L , which is the average velocity at which carriers diffuse across 

the region, L.  The physical interpretation of eqn. (53) is that under high drain bias, there is short, 
low-field region at the beginning of the channel (the top of the barrier region as in Fig. 3) across 
which carries must diffuse.  This bottleneck limits the current, because once they diffuse across 
the region, they are quickly swept across the high-field part of the channel [8]. 
 
Is the simple physical picture that emerges from our model consistent with traditional MOSFET 
theory?  Physical arguments tell us that the length of the bottleneck at the beginning of the 
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channel is the distance over which the potential drops by kBT/q [8].  (This result assumes a non-
degenerate carrier gas, the required potential drop is larger for a degenerate gas [8].)  We can 
write the length of this critical region as 
 

  

L =
E (0)

kBT q( )
, (54) 

where E(0) is the electric  field  at the beginning of the channel.  According to traditional MOS 
theory 
 

 

E (0) =
V
GS

!V
T( )

2L
, (55) 

 
and the Einstein relation is 
 

Deff = µeff

kBT

q
. (56) 

 
By using eqns. (54) – (56) in (53), we find 
 

ID =
W

2L
µeffCox VGS !VT( )

2 , (57) 

 
which is the traditional result for the long channel MOSFET under high drain bias [1]. 
 
 
6.  Summary 
In these notes, I have outlined a simple theory for the ballistic MOSFET that extends the original 
treatment of the ballistic MOSFET of Natori [9, 10].  To test your understanding of the concepts 
discussed in these notes, you might try to extend the results to include two subbands, for a 
numerically tabulated E(k), or for a nanowire transistor.  The extension to ellipsoidal, multi-
valley energy bands, specifically the conduction band of silicon, is discussed in [9, 10, 13].  For a 
more advance treatment of this subject, see ref. [7].  Reference [7] also includes a discussion of 
‘floating boundary conditions’, which can be important in some cases.  We also showed how the 
ballistic model can be modified to include scattering, and we showed that the results reduce to 
the traditional theory of the MOSFET.  For a physical discussion of scattering in nanotransistors, 
see ref. [8].  We have discussed the ballistic limit and the diffusive limit.  For a treatment of the  
general case, see [11]. 
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