Si and Non-Si Nanotechnologies and their Benchmarking

Robert Chau

Intel Fellow

Director of Transistor Research and Nanotechnology Technology & Manufacturing Group Intel Corporation

April 25, 2005

Content

- Introduction
- Benchmarking metrics
- Benchmarking methodology
- Benchmarking results
- Summary

Transistor Scaling

Transistor physical gate length will reach ~15 nm before end of this decade, and ~10 nm early next decade

Emerging Nanoelectronic Devices

Benchmarking Metrics

- Benchmark emerging nanoelectronic devices against state-of-the-art Si devices
 - Separate reality from hype
 - Identify device strengths and shortcomings
 - Gauge research progress
- 4 key device metrics
 - CV/I vs L_G -- Intrinsic speed
 - Energy-Delay product vs L_G -- Switching energy
 - Subthreshold slope vs L_G -- Scalability
 - CV/I vs I_{ON}/I_{OFF} -- I_{OFF} vs speed tradeoff

Low CV/I and high I_{ON}/I_{OFF} required for logic applications

Benchmarking Methodology

- $I_{ON} = I_{DS}$ at $|V_{DS}| = V_{CC}$ and $|V_G V_T| = 2 V_{CC} / 3$
- $I_{OFF} = I_{DS}$ at $|V_{DS}| = V_{CC}$ and $|V_G V_T| = V_{CC} / 3$
- Measure or estimate capacitance C

Intrinsic Gate Delay CV/I for PMOS

- CNT shows significant p-channel CV/I improvement over Si
 - CNT has >20x higher effective p-channel mobility than Si
- Si nanowires do not show any improvement over Si

Energy-Delay Product for PMOS

 CNT shows significant p-channel energy-delay product improvement over Si due to higher effective p-channel mobility than Si

Subthreshold Slope vs L_G for PMOS

PMOS CV/I versus I_{ON}/I_{OFF} Ratio

- For I_{ON}/I_{OFF} < 100, CNT shows improvement over Si due to higher channel mobility and lower V_{CC}
- I_{ON}/I_{OFF} (<100) in CNT is limited by ambipolar conduction

Ambipolar Conduction: Parasitic Leakage in CNTs

- CNTs use metal-CNT Schottky contacts to form source and drain, which leads to ambipolar conduction
- One of the technical challenges in CNT is to make conventional implanted or diffused PN junctions to form source and drain

Intrinsic Gate Delay CV/I for NMOS

- n-channel CNT not as well established as p-channel CNT
- III-V (e.g. InSb) devices show significant CV/I improvement over Si
 - III-V devices have >50X higher effective n-ch mobility than Si
 - III-V devices operated at low VCC = 0.5V

Energy-Delay Product for NMOS

 III-V (e.g. InSb) devices show significant energy-delay product improvement over Si due to >50X higher effective mobility and lower V_{cc} = 0.5V used

Subthreshold Slope vs L_G for NMOS

NMOS CV/I versus I_{ON}/I_{OFF} Ratio

- Use of chemically-doped junctions delays the ambipolar conduction in the CNTFET despite poor gate delay performance at present
- I_{ON}/I_{OFF} ratio of InSb QWFET is limited by Schottky gate leakage

Summary

- Need to diligently benchmark emerging nanoelectronic devices against state-of-the-art Si data to
 - identify potential device strengths and shortcomings, and
 - to gauge research progress
- Emerging non-Si nanoelectronic devices show both challenges and opportunities for future logic transistor applications

References

- R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, "Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications", IEEE Transactions on Nanotechnology, vol. 4, pp. 153-158, 2005.
- R. Chau, J. Brask, S. Datta, G. Dewey, M. Doczy, B. Doyle, J. Kavalieros, B. Jin, M. Metz, A. Majumdar, and M. Radosavljevic, "Emerging Silicon and Non-Silicon Nanoelectronic Devices: Opportunities and Challenges for Future High-Performance and Low-Power Computational Applications", Proceedings of Technical Papers, 2005 IEEE VLSI-TSA International Symposium on VLSI Technology, Hsinchu, Taiwan, pp. 13-16, April 25-27, 2005.