

MARC HEYNS

IMEC Kapeldreef 75, B-3001 Leuven, Belgium also at MTM, KULeuven, Belgium

Innovation in nanoelectronics

for a sustainable future

Moore's Law

In 1965, Intel co-founder Gordon Moore predicted that the number of transistors on a piece of silicon would double every couple of years – an insight later dubbed "Moore's Law," His prediction has held true, as ever-shrinking transistor sizes have allowed exponent held true, as ever-shrinking transistors on a single chip.

Moore's Law is now a br applies its principles life eople to play, lear te company has

Whole new ways for e have come about at re's Law.

Cost scaling Improved performance

9 Git par Compan

2. Dateit Manshed

10

1965

Mumber of Components per integrated Circuit

Nanoscale dimensions by lithography

Exposure wavelength (λ)

4	6nm	: g-line							
(5nm	: i-line							
2	8nm	: Deep-UV (KrF)							
•	3nm	: Deep-UV (ArF)							
•	7nm	: Vacuum UV (F2)							
13.5nm: Extreme UV (EUV)									

Lord Rayleigh

resolution =
$$k_1 \cdot \frac{\lambda}{NA}$$

3

22-16nm SRAM fabricated with EUV

imec

© IMEC 2013

Logic scaling trend and roadmap

Feature dimension & voltage scaling are concurrent drivers

Logic scaling trend and roadmap

- Feature dimension & voltage scaling are concurrent drivers
- Material & device architecture innovations enablers of continual scaling

imec

Strained Ge pMOS devices

Compressively strained Ge can outperform sSi pMOS

 Demonstration of strained Ge/SiGe FinFETs shows promising electrical results

C IMEC 2013

Strained Ge pMOS devices

Compressively strained Ge can outperform sSi pMOS

- Compressively strained Ge channels using GeSn requires strained GeSn with Sn content higher than Sn solubility in Ge (<1%)
- Defect free, fully strained GeSn grown on Ge with 8% Sn demonstrated by Atmospheric Pressure –CVD of GeSn at 320°C

Ge_{1-x}Sn_x devices

Semiconducting GeSn alloy has tunable bandgap and the possibility of high electron and hole mobility.

- Ge_{1-x}Sn_x is an interesting material for electronic and optical applications
- The extremely low (<1%) solid solubility of Sn in Ge presents considerable difficulties in synthesizing GeSn alloys with good crystallinity.

Alternative materials for CMOS

Material	IV - IV		III - V						
Property	Si	Ge	InP	GaAs	In _{0.5} Ga _{0.5} As	GaSb	InAs	InSb	
Elec. mobility (cm ² / V·sec)	1 400	3 900	5400	8 500	12 000	3000	40 000	77 000	
Electron effective mass (/m ₀)	m _t : 0.19 m _l : 0.98	m _t : 0.082 m _l : 1.6	0.082	0.067	0.041	0.041	0.023	0.014	
Hole mobility (cm² / V·sec)	450	1 900	200	400	450	1000	500	850	
Hole effective mass (/m ₀)	т _{нн} : 0.49 т _{ьн} : 0.16	m _{HH} : 0.33 m _{LH} : 0.043	m _{HH} : 0.6 m _{LH} : 0.089	m _{HH} : 0.51 m _{LH} : 0.082	т _{нн} : 0.45 т _{цн} : 0.052	т _{нн} : 0.4 m _{LH} : 0.05	т _{нн} : 0.41 т _{Lн} : 0.026	m _{HH} : 0.43 m _{LH} : 0.015	
Bandgap (eV)	1.11	0.67	1.34	1.42	0.74	0.72	0.36	0.17	
Lattice parameter (A)	5.431	5.658	5.868	5.653	5.868	6.095	6.058	6.479	

> Low effective mass \rightarrow high source injection velocity and drive currents.

Smaller bandgap materials → low V_t possible with 'reasonable' work-function metals, allowing to reduce V_{dd}

Heterogeneous CMOS integration

Heterogeneous integration of high-mobility channel materials (Ge and III/V) in FinFETs for next-generation CMOS technology

CMOS Ge and III/V virtual substrate

> Demonstration of CMOS Ge/InP virtual substrate by ART (Aspect Ratio Trapping)

(MEC 2013

Density scaling for sub 7nm CMOS

Vertical nanowires will be needed to maintain the density scaling below 7nm.

- Contacted gate pitch reduction necessary for continual density scaling
- L_{gate} scaling limited by device electrostatics out of space for contact and gate

C IMEC 2013

III-V nanowires

Vertical nanowires will be needed to maintain the density scaling below 7nm.

III-V nanowires

- > Large lattice mismatch (eg InAs on Si) can be covered by nanowires
- Very interesting technique to introduce various III/V materials on Si

InAs NW growth on patterned Si(111)

- (111) nanowire growth direction
- High growth selectivity
- Desired crystallisation/faceting
- ~0.5 nm/s growth rate
- ~100-200 nm diameter

Power crisis: the need for V_{DD} scaling

- Higher performance and mobile processors are power limited
- \succ V_{dd} scaling is slowing down

Nanowire / TunnelFETs

New devices for reduced power consumption

Heterojunction TunnelFET

New devices for reduced power consumption

- Both configurations are lattice matched:
 - $GaAs_{0.5}Sb_{0.5} In_{0.53}Ga_{0.47}As$: for highest I_{on}
 - $GaAs_{0.5}Sb_{0.5} InP$: for lowest I_{off}

Graphene beyond CMOS devices

In bi-layer graphene the effective band-gap can be "tuned" electrostatically
TunnelFET devices in graphene should provide good I_{on}/I_{off} and steep subthreshold for low power

imec © IMEC 2013

Many other 2D materials possible

Obtained by exfoliation ("scotch tape") from bulk crystals!

Geim et al, Manchester PNAS 2005

C IMEC 2013

p- and n-MOS monolayer MX₂ FETs

- > 2D materials can be used to produce CMOS
- These materials can also be used on flexible substrates

2D materials: Silicene

- Silicene is the Si equivalent of graphene.
- Promising results have been obtained on silicene nanoribbon fabrication on Ag surfaces.
- Can also be made on AIN

Filled-states STM image, $11 \times 10 \text{ nm2}$ (V = -3.3 V, I = 1.90 nA) of the dense array of SiNRs forming a 1D grating with a pitch of ~ 2 nm (a); ball model of the corresponding calculated atomic structure (b).

P. De Padova et al, Appl. Phys. Lett. 96, 261905 (2010), B. Aufray et al, Appl. Phys. Lett. 96, 183102 (2010)

Bulk quasi-2D superlattices

Generating anisotropic band structures

- Lower effective mass in transport direction: higher mobility
- Enhanced effective mass in perpendicular direction: (→lower) leakage and less interaction with insulator defects)

- > EPI growth of Si/Ge stacks with a (sub)-monolayer thick interspersing species to tune the band structure.
- Modeling of the electronic properties and of transport combined with material \succ growth and experimental characterization.

[1] Lu et al, nature, 378, p. 258 (1995)

Logic scaling trend and roadmap

V_{dd} 1.0-1.1V 0.9-1.0V 0.8-0.9V 0.7-0.8V 0.6-0.7V 0.5-0.6V < 0.5V

- CMOS with high mobility channel materials
 - Ge and III/V CMOS
- Steep subthreshold devices
 - Nanowires for improved electrostatics
 - Steep subthreshold devices (e.g. TunnelFETs) for reduced power
- 2D(-like) materials
 - Graphene, silicene, MoS₂, nanolattices, ...
- Novel devices and logic concepts
 - Spin-based devices, topological insulators, non-Boolean logic, MTJ logic, memristors,

Power reduction is the major challenge

Many new materials and devices will be implemented in future CMOS to maintain the performance scaling

imec

© IMEC 2013

Global collaboration including entire value chain is required to address the huge R&D challenges.

Thank you for your attention

MARC HEYNS

IMEC

Kapeldreef 75, B-3001 Leuven, Belgium also at MTM, KULeuven, Belgium

imec

KU LEUVEN