A 32nm Logic Technology Featuring 2nd-Generation High-k + Metal-Gate Transistors, Enhanced Channel Strain and 0.171um² SRAM Cell Size in a 291Mb Array

<u>S. Natarajan</u>, M. Armstrong, M. Bost, R. Brain, M. Brazier, C-H Chang, V. Chikarmane, M. Childs, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He*, R. Heussner, R. James, I. Jin, C. Kenyon,
S. Klopcic, S-H. Lee, M. Liu, S. Lodha, B. McFadden, A. Murthy, L. Neiberg, J. Neirynck, P. Packan, S. Pae*, C. Parker, C. Pelto, L. Pipes,
J. Sebastian, J. Seiple, B. Sell, S. Sivakumar, B. Song, K. Tone, T. Troeger, C. Weber**, M. Yang, A. Yeoh, K. Zhang

> Logic Technology Development, *QRE, ** TCAD Intel Corporation

- Process Features
- Transistors
- Interconnects
- Circuits
- Conclusions

Process Features

- 32nm Groundrules
- 193nm Immersion Lithography
- 2nd Generation High-K + Metal Gate
- 4th Generation Strained Silicon
- 9 Cu Interconnect Layers
 Low-k CDO / SiCN dielectric
- Cu bump with Lead-free Packaging

32nm Design Rules

Layer	Pitch (nm)	Thick (nm)	Aspect Ratio
Isolation	140.0	200	
Contacted Gate	112.5	35	
Metal 1	112.5	95	1.7
Metal 2	112.5	95	1.7
Metal 3	112.5	95	1.7
Metal 4	168.8	151	1.8
Metal 5	225.0	204	1.8
Metal 6	337.6	303	1.8
Metal 7	450.1	388	1.7
Metal 8	566.5	504	1.8
Metal 9	19.4um	8um	1.5

~0.7x linear scaling from 45nm

Contacted Gate Pitch

- Transistor gate pitch of 112.5nm
- Continues 0.7x per generation scaling

Tightest contacted gate pitch reported for 32nm generation

SRAM Cells 0.171 um² SRAM cell

Transistor density doubles every two years

SRAM Array Density

• SRAM array density achieves 4.2 Mb/mm²

Includes row/column drivers and other circuitry

- Process Features
- Transistors
- Interconnects
- Circuits
- Conclusions

Key Transistor Features

- 30nm gate length with 112.5nm contacted gate pitch
- 2nd generation Hi-k + Metal Gate
 - 0.9nm EOT Hi-K with dual workfunction metal gate electrodes
 - Continued use of Replacement Metal Gate approach
 - Metal gate deposition after high temperature anneals
 - Integrated with strained silicon process
 - Transistor mask count same as 45nm
 - Adds ~4% process cost over non hi-k/MG
- 4th generation of strained silicon

Device Characteristics

Excellent Vt roll-off and DIBL Well controlled short channel effects Subthreshold slope ~100 mV/decade

Transistor Performance vs. Gate Pitch

Contacted Gate Pitch (nm) Highest reported drive current at tightest reported gate pitch Simultaneous performance and density improvement

- Process Features
- Transistors
- Interconnects
- Circuits
- Conclusions

Interconnects

- Metal 1-3 pitches match transistor pitch
- Graduated upper level pitches optimize density & performance
- Extensive use of low-k ILD and SiCN

- Process Features
- Transistors
- Interconnects
- Circuits
- Conclusions

32nm Shuttle

291 Mbit SRAM array PROM array High speed register file High speed I/O circuits High frequency PLL/Clock

Discrete test structures

32nm shuttle with SRAM and key Logic circuits Allows early co-optimization of process and design

SRAM Test Vehicle

- 291 Mb, 0.171um2 SRAM Cell
 - >1.9B transistors
 - First reported functional operation in Sep '07
- Process learning vehicle demonstrates
 - High yield
 - High performance
 - Stable low voltage operation

SRAM Vmin

Vmin distribution for 3.25Mb sub-arrays Healthy 770mV median Vmin

SRAM Yield

2002 2003 2004 2005 2006 2007 2008 2009 2010

32nm SRAM yield maintains 2-year cadence

- Process Features
- Transistors
- Interconnects
- Circuits
- Conclusions

Conclusions

- An industry leading 32nm logic technology is presented
- Continues Moore's law relative to 45nm:
 - 0.7x contacted gate pitch scaling
 - 0.5x SRAM cell size scaling
 - 2.2x array density scaling
- Record linear and saturated transistor drive currents achieved
 - Average of 20% improvement in drive current over 45nm
- Healthy yield achieved on 291Mb SRAM with 0.171 um² SRAM cell size and excellent low voltage operation
- Completed development phase on 32nm CMOS
 - On track for production readiness in H2'09

Acknowledgements

- The authors gratefully acknowledge the many people in the following organizations at Intel who contributed to this work:
 - Logic Technology Development
 - Quality and Reliability Engineering
 - Technology CAD
 - Assembly & Test Technology Development

For further information on Intel's silicon technology, please visit our Technology & Research page at <u>www.intel.com/technology</u>