
DOI: 10.1007/s00339-004-3154-4

Appl. Phys. A 80, 1183–1195 (2005)

Materials Science & Processing
Applied Physics A

g. snider�

p. kuekes
t. hogg
r. stanley williams

Nanoelectronic architectures
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA

Received: 13 September 2004/Accepted: 23 November 2004
Published online: 11 March 2005 • © Springer-Verlag 2005

ABSTRACT Configurable crossbars are the easiest computa-
tional structures to fabricate at the nanoscale. By creating
multiple types of crossbars and assembling them into larger
structures, we may implement general computation. Architec-
tures for diode-based and transistor-based logic are presented,
along with latching mechanisms. We present simulation results
from defect-tolerance studies on two applications (a 3-bit adder
and a 4-bit microprocessor) mapped onto defective, nanoelec-
tronic fabrics, and outline strategies for fault tolerance.

PACS 85.35.-p; 85.40.Bh; 85.40.Qx; 85.65.+h

1 Introduction

Nanoelectronics offers the potential for much
denser circuitry than is possible with current CMOS tech-
nology, but presents a number of challenges that must be
addressed if we are to successfully exploit it. At the size scales
we are considering (< 15 nm), conventional lithography will
lack the resolution necessary to create the individual devices
normally combined to create larger circuits. Sensitivity to
noise, subatomic particles, and even quantum uncertainty at
this scale will increase the rate of transient faults to the point
that redundancy and fault tolerance will become necessary for
logic functions as well as memory. And, regardless of fabrica-
tion technique, nanoscale circuits will likely contain defects
so numerous that it would be uneconomical to simply dis-
card circuits containing a single defect – some form of defect
tolerance will be necessary to achieve acceptable yields.

These challenges have led us to focus on configurable
crossbar architectures [6, 7, 11, 15, 20, 25–27, 33, 51], where
each cross point within a crossbar can be independently con-
figured to activate an electronic device, such as a resistor,
diode, or transistor. Crossbars are one of the easiest structures
to build using nanoimprint lithography [6, 23, 24]. Their high
degree of redundancy offers a simple strategy for defect tol-
erance. Their regular structure makes them easy to analyze
for devising a strategy for fault tolerance. Configurability of-
fers the potential for using a single nanoelectronic fabric for

� Fax: +1-650-813-3312, E-mail: snider.greg@hp.com

a large number of applications, much like field-programmable
gate arrays, reducing design costs.

The architectures we describe here are necessarily specu-
lative to varying degrees since many of the crossbar devices
we hypothesize are either not yet functional in the labora-
tory, or are functional but incompletely characterized. Config-
urable nanoscale transistor crossbars, for example, do not yet
exist; consequently we use simplified, idealized models for
them.

2 Crossbars, interlayers, and junctions

The word crossbar denotes both an interconnection
topology and a fabrication geometry. A nanoelectronic cross-
bar consists of two or more parallel planes of nanoscale wire
arrays (‘nanowires’), with each pair of planes separated by
a thin layer of a chemical species (called the ‘interlayer’) with
particular electrochemical properties (see Fig. 1). The region
where a wire in one plane crosses over a wire in the other
plane is called a ‘junction’. The nature of the interlayer and the
type of wires used determine the type of device formed at each
junction (Fig. 2).

Some junctions have the desirable property of being con-
figurable, meaning that, at some time after manufacturing, the
devices at selected junctions may be independently activated
or deactivated [8]. An activated device (such as a resistor)
functions as a normal electrical component; a deactivated de-
vice appears to have functionally vanished. A configurable
resistor junction, for example, behaves as if it were a resistor
in series with a switch that may be opened or closed. When
closed, the resistor connects the upper and lower wires in the
junction; when open, the resistor has no effect on the cir-

FIGURE 1 Schematic view of a nanoelectronic crossbar from two differ-
ent perspectives. Junctions may be independently configured to behave as
electronic devices



1184 Applied Physics A – Materials Science & Processing

FIGURE 2 Tiles. Depending on the nature of the nanowires and interlayer,
different electronic devices may be configured at the junctions, although only
a single device type is available for each tile. Normally a junction is ‘non-
functional’ in that there is no interaction between the two wires that define
it; when an appropriate voltage differential is applied to the two wires, the
electronic component is configured, e.g. a switch is closed that connects the
wires through the device

FIGURE 3 A tile formed by molecular wires (‘nanowires’) crossing sub-
micron wires (‘microwires’) separated by an interlayer. These junctions may
also be configured to form different electronic components

cuit. Configuring the device is the act of setting the switch to
be open or closed. This may be done electrically, optically,
mechanically, or by some other means. Typically, a junction
in a crossbar that we fabricate is configured electrically by
applying different voltages to the two wires forming the junc-
tion. A device which is reconfigurable may be repeatedly acti-
vated and deactivated.

Junctions may also be formed between a nanowire and a
submicron-scale wire (also called a ‘microwire’) on an un-
derlying substrate, such as conventional CMOS (Fig. 3). Such
junctions may also be configured to form electronic compo-
nents, depending upon the composition of the wires and the
separating interlayer.

2.1 Tiles

Submicron-scale masking can be used to realize
multiple device types in side-by-side regions within a single
crossbar such that the nanowires maintain electrical conduc-
tivity across and between regions. We refer to a single-device-
type region as a tile, our fundamental architectural building
block. Several adjacent tiles can be combined into larger func-
tional units, which are referred to as composite tiles or blocks.
Thus, in Fig. 4, the junctions in the gray interlayer region may
be configured to form closed cross-point switches, while junc-
tions in the pink and blue regions may be configured to form
n-FETs or p-FETs, respectively [16, 22, 29]. Alignment pre-
cision for masking, as compared to nanowire pitch, limits the
minimum tile size to roughly 10 ×10 junction regions of the
crossbar.

FIGURE 4 A ‘mosaic’ of tiles is created by using different interlayers in
different regions of the crossbar

A single tile is insufficient to implement logic, but com-
posite tiles or blocks can create many different families of
logic depending upon the tiles that comprise them. For ex-
ample, Fig. 5 schematically illustrates a logic block imple-
mentation of an AND/OR gate using diode/resistor logic.
The horizontal and vertical lines in that figure represent
nanowires, with the horizontal wires in one plane and the

FIGURE 5 A logic block implementing AB+C gate using diode/resistor
logic



SNIDER et al. Nanoelectronic architectures 1185

vertical wires in another. Pullup and pulldown crossbars are
configurable resistor tiles between nanowires (horizontal and
vertical lines) and submicron-scale microwires on a substrate
that supply power and ground. Selected junctions in these
tiles are configured to supply the pull-up and pull-down re-
sistors required by diode logic. A configurable diode tile is
used to implement the diodes required for the AND and OR
gates.

The diode/resistor logic block in Fig. 5 is, perhaps, the
simplest to fabricate, but cannot implement logical inversion
or signal regeneration. A more powerful logic block based on
n-FETs and p-FETS, known as the ‘complementary/symme-
try array’ [50], is shown in Fig. 6. This particular logic block
is capable of implementing AND/OR/INVERT gates, pow-
erful enough for general computation (Fig. 7). Note that it
is possible to design such complex gates so that they map
easily onto the crossbar logic block. Details may be found
in [47].

FIGURE 6 A logic block implemented with the complementary/symmetry
array. Each junction in the pink quadrant may be independently configured to
implement a p-FET, while each junction in the blue quadrant may be config-
ured to implement an n-FET. The junctions in the two lower quadrants may
be configured to be ‘closed’ switches, representing a low-impedance path
between the two nanowires defining the junction

FIGURE 7 Implementing logic by selec-
tively configuring junctions in the comple-
mentary/symmetry array

2.2 Latches

Diode/resistor logic, such as shown in Fig. 5, re-
quires signal restoration to regenerate signals degraded by
voltage drops across diodes and resistors within the logic.
Without such restoration, it is impossible to implement basic
memory devices like latches and flip-flops. We can augment
the diode/resistor logic block with a basic latch block that im-
plements both signal restoration and memory. The latch block
is based on a ‘hysteretic resistor’ junction, shown in Fig. 8.

FIGURE 8 The ‘hysteretic resistor’ junction. Conceptually this is a switch
across a junction that can be opened (high-impedance state) or closed (low-
impedance state), shown schematically in (a). An idealized I/V curve for
such a device is shown in (b), with typical parameters listed in (c)



1186 Applied Physics A – Materials Science & Processing

The hysteretic resistor junction is normally in one of
two states: high impedance (‘open’) or low impedance
(‘closed’) [6, 52]. The switch remains in whatever state it is
in as long as the voltage drop across it (measured at ‘V’ rela-
tive to ‘x’ in Fig. 8a) remains in the operating range [Vo, Vc]. In
the open state, though, the switch will transition to the closed
state if the voltage drop across the switch exceeds Vc; in the
closed state, the switch will transition to the open state if the
voltage drop is less than Vo. However, an excessive positive or
negative voltage drop across the junction will destroy it.

An array of one-bit latches can be built from two hys-
teretic resistor tiles as shown in Fig. 9. This block consists of
a number of nanowires crossing two microwires, with each
microwire forming a tile with the nanowires that cross it. Note
that the two side-by-side tiles possess switches of opposite po-
larity; the configuration voltages applied to activate junctions
along the ControlA microwire are of the opposite polarity for
junctions along ControlB. It is for this reason that two dif-
ferent 1 ×N crossbars (tiles) are needed rather than a single
2 ×N crossbar. Input signals enter the nanowires on the left
and a sequence of voltages applied to the microwires causes
the value of the input signals to be stored in the junctions of
microwires ‘ControlA’ and ‘ControlB’, effectively creating
a latch for each of the nanowires. Details of the operation of
this latch are sketched in Fig. 10 and described in detail by
Kuekes [28]. This latch not only stores input data values, it
also regenerates the signal voltage and may deliver the out-
put signals in either true or inverted form. These properties
make it suitable for use with diode/resistor logic (which lacks

FIGURE 9 This latch array stores data for each signal entering a nanowire
on the left and drives the stored signals out to the right

FIGURE 10 Operation of a single latch within
the array. (a) Both switches are uncondition-
ally opened by application of appropriate volt-
ages to ControlA and ControlB; (b) an input
signal is applied to the horizontal nanowire; (c)
ControlA is driven with a positive voltage that
will cause the switch to close only if the input
is ‘low’; (d) ControlB is driven with a nega-
tive voltage that will cause its switch to close
only if the input is ‘high’; (e) the input signal
is removed from the input – at this point ex-
actly one of the two switches will be closed;
(f) the latch outputs the held signal by driving the
two control microwires

FIGURE 11 A two-bit counter implemented with impedance-encoded
latches and an unusual form of diode/resistor logic

the inversion and signal-regeneration capabilities) to create
synchronous circuits capable of universal computation. Note
that, since the input and output to each latch share the same
nanowire, additional circuitry is required to provide isolation
between the input and output at appropriate times.

This latch uses conventional voltage encoding at its out-
put. A simpler latch can be constructed using only one of the
tiles shown in Fig. 9, but the resulting latch uses impedance
rather than voltage to encode the stored logic value. Com-
bining this latch with an unusual form of diode/resistor logic
enables one to build sequential logic circuits, forming a foun-
dation for general computation. Figure 11 shows an example
of this logic/latch family – a resettable, two-bit counter. De-
tails are given in [49].

2.3 Mosaics and fabrics

Tiles and blocks may be composed to form even
larger structures, called ‘mosaics’, that perform some use-
ful function. One example of a mosaic is the antisymmetric
array shown in Fig. 12, which takes advantage of circuit lo-
cality (often referred to as ‘Rent’s rule’ [31]) to provide a
low-overhead interconnect between circuit components that
are strongly connected with each other.



SNIDER et al. Nanoelectronic architectures 1187

FIGURE 12 Antisymmetric arrays are con-
structed from logic blocks (of almost any logic
family) to create a ‘supermosaic’. The large
structure takes advantage of the locality of
connection implied by ‘Rent’s rule’, provid-
ing low-overhead connectivity between log-
ical components that are closely interacting.
(a) Logic block structure; (b) antisymmetric ar-
ray, built out of two logic blocks (one flipped
upside down) and a crossbar. Signals between
the two logic blocks are exchanged without
using any of the vertical wire resources of
the central crossbar; (c) modulo-4 incrementer
implemented using the antisymmetric array:
[B’A’]=[BA]+1

Using reflections and rotations, two complementary/sym-
metry arrays (Fig. 6) can be interleaved to form the config-
urable bidirectional buffer block shown in Fig. 13. This block
can take a signal on any wire on either side, amplify it (with in-
version), and drive it out on any wire on the opposite side. The
choice of direction on each wire and the mapping of an input
wire to an output wire are independent, making this a useful
component in building a routing network, and for ‘stitching
together’ nanowires from two different regions to effectively
form longer nanowires.

FIGURE 13 Bidirectional buffer array. This structure regenerates each sig-
nal without introducing a delay from latching. Each nanowire may be
independently configured for direction

FIGURE 14 Logic fabric: logic and routing resources combined to form
a larger computational structure



1188 Applied Physics A – Materials Science & Processing

FIGURE 15 Larger computing fabrics may be built out of combinations of
logic and routing blocks, hierarchically organizing them in a fractal-like
pattern

Larger computational structures can be built by com-
bining the arrays with configurable switch tiles for rout-
ing. One example is the logic fabric shown in Fig. 14. The
routing structure on the right provides local communication
between the logic arrays on the left as well as communi-
cation with external signals. One can hierarchically com-
bine structures, such as the logic block, bidirectional buffer
block, and routing tiles, to build still larger fabrics as shown
in Fig. 15.

3 Configuration and the micro/nanointerface

Nanoelectronic circuits must interface with the
outside world, both for input/output and to allow the nanocross-
bars to be configured. Although one can envision, for ex-
ample, photonic or other interfaces, the initial interfaces we
are pursuing are with conventional CMOS. This leads to
a problem: the scale and pitch of the nanowire crossbars are
incompatible with the comparably coarse features of CMOS.
We need a strategy for interfacing the submicron world with
the nanoworld.

Demultiplexers are an appealing mechanism for this inter-
face [26, 58]. They allow a small number of submicron-scale
wires (microwires) to control a larger number of nanoscale
wires (nanowires) by forcing a ‘selected’ voltage onto exactly
one of the nanowires, and a different, ‘unselected’, voltage
onto the rest. This provides a mechanism for a CMOS circuit
on a silicon substrate to interrogate and configure a nano-
electronic ‘chip’ residing on its surface. Demultiplexers also
have the appealing property that they can be efficiently imple-
mented in crossbars.

Figure 16 illustrates a demultiplexer implementation
using a diode crossbar with specific junctions configured. The
address lines of the demultiplexer are microwires that could
be implemented on a CMOS substrate; the output data lines
are nanowires crossing the microwire address lines, forming
a nanowire/microwire crossbar. If we have full control over
which junctions are configured in the crossbar, we need only
about 2 log N address microwires to control N nanowires.
If we lack such control, but have a fabrication process that

FIGURE 16 A demultiplexer, shown schematically on the left, selects one
of N output lines as directed by an input address [A2 A1 A0]; an imple-
mentation of a demultiplexer, shown on the right, using a diode crossbar and
resistors

FIGURE 17 Using a row demultiplexer and a column demultiplexer allows
for the selection of a single junction with a crossbar

allows each junction to be independently configured with
probability 0.5, the number of address wires increases to about
5 log N [26].

Placing two demultiplexers along adjacent edges of
a nanowire/nanowire crossbar gives us a means to ‘select’ ex-
actly one junction within that crossbar. As shown in Fig. 17,
the demultiplexer driving the horizontal nanowires (rows)
might be addressed to select one of those wires by driving
it with a positive voltage (for simplicity, we assume that un-
selected outputs are driven with ground); the demultiplexer
driving the vertical nanowires (columns) might be addressed
to drive a selected column with a negative voltage (again, un-
selected outputs are assumed to be driven to ground). The
result is that the junction defined by the intersection of the
driven column and the driven row has a voltage drop across it
that is larger than any other junction in the crossbar. This al-
lows us to configure (and deconfigure) junctions sensitive to
voltage drops across them.



SNIDER et al. Nanoelectronic architectures 1189

FIGURE 18 Microwires carrying address lines may be shared among multi-
ple demultiplexers

Figure 18 illustrates how microwires can be shared
among several demultiplexers in order to configure multiple
crossbars.

4 Defect tolerance

For nanoscale crossbars, the main type of defect is
that introduced during manufacture (so-called ‘static defects’)
rather than during operation. This is reasonable for plausible
technologies, which involve high temperatures during manu-
facture, and hence a relative ease of introducing defects, but
low temperature during operation, with much less chance of
creating new defects. In this situation, an appropriate systems
architecture requires a compiler to arrange for desired cir-
cuit behaviors by using only correctly functioning junctions
within crossbars, as determined by a testing phase after man-
ufacture [9, 19, 34]. This approach of avoiding known defects
yields a defect-tolerant architecture. It contrasts with methods
dealing with defect-induced faults that appear during oper-
ation, perhaps intermittently, e.g. using majority votes from
replicated hardware.

For simplicity, we restrict our attention here to defects
leading to ‘unconfigurable’ junctions, rather than defects that
short out a junction or adjacent wires, or that unexpectedly
cause a break in a wire. In this scenario, we can test the circuits
to determine which junctions are defective, and then use the
remaining ones to implement the circuit. That is, a compiler
takes the required logic function and a table of defects to find
a way to implement that function on the defective crossbar
fabric.

This leads to the central question addressed in this section:
given a defect rate and a certain-size crossbar (or crossbar
fabric), how likely is it that we can find a way to imple-

ment a particular logic function in that crossbar? Determin-
ing whether such a circuit exists, and finding it if it does, is
a combinatorial search problem. Thus, a related problem is
the computational difficulty for the compiler to identify an
implementation, or conclude that no implementation is pos-
sible. Decreasing the allowable defect rate for a nanoelec-
tronic fabric will generally require more difficult and costly
manufacturing. On the other hand, increasing the allowable
defect rate will make it less likely that a desired circuit can
be implemented, and can also result in longer run times for
the compiler to identify a way to implement the circuit while
avoiding defects.

A further aspect of this problem is that logic functions can
often be written in different but logically equivalent forms.
For example, (a OR b) AND c is logically equivalent to
(a AND c) OR (b AND c). These rewrites can involve different
numbers of terms and, it turns out, affect the compiler’s ability
to successfully map the function onto a defective fabric.

FIGURE 19 A 3-bit adder which adds two 3-bit numbers (denoted as the bits
A2A1A0 and B2B1B0) to produce a 4-bit sum (S3S2S1S0). The ripple-carry
implementation (top) translates directly to a diode crossbar implementation
(bottom) using feedback from some of the outputs to the inputs (gray lines).
Regenerative buffers (left-pointing triangles) between stages regenerate sig-
nals degraded by diode and resistor voltage drops. The input wire marked
−A0 gives the complement of input bit A0, and similarly for the other inputs.
Note that the carry bit between successive stages of the crossbar implemen-
tation must be presented in both original and complemented forms



1190 Applied Physics A – Materials Science & Processing

4.1 3-bit adder

We first consider the mapping of a small, 3-bit
adder circuit onto a diode/resistor logic block (as was illus-
trated in Fig. 5). There are several different ways to implement
this circuit. Figure 19 shows a straightforward 3-bit, ripple-
carry adder that is essentially a direct translation of the logic
circuit shown at the top, producing four output bits, S0 . . . S3,
representing the sum of the two 3-bit numbers. Because this
implementation uses several levels of logic, some of the in-
termediate output signals must be fed back to some of the
inputs, possibly requiring signal regeneration in the process to
compensate for degradation due to diode and resistor voltage
drops.

A second implementation of the 3-bit adder is shown in
Fig. 20. Here the entire circuit uses only two logic levels, elim-
inates the need for feedback, and requires less area. On the
other hand, it requires more diode junctions and uses a greater
number of diodes along some of the vertical and horizontal
wires. For instance, the circuit in Fig. 19 never uses more than
four diodes on any wire, while the circuit of Fig. 20 requires as
many as 16. Thus we might expect that this circuit, which re-
quires packing more diodes into a smaller area, might be more
difficult to implement on a defective crossbar.

To examine the behavior of implementing adder circuits
on defective crossbars, we created a number of simulated test
cases. Specifically, for a given adder implementation (e.g.
single- or multiple-stage) and crossbar size, we mark each
junction of the diode crossbar as defective independently
with probability p. Because the pull-up and pull-down re-
sistor junctions would have much lower defect rates (since
they are formed by microwire/nanowire junctions, of con-
siderably larger area than the diode nanowire/nanowire junc-
tions), we restrict our attention to cases with no defective
resistors. A compiler was used to automatically map the adder
onto the defective crossbar. A compilation was characterized
by three parameters: (1) defect probability, p; (2) adder im-
plementation (single- or multiple-stage); (3) crossbar area, a
(number of junctions in the diode crossbar). An experiment
consisted of 50 attempts to compile a single implementa-
tion onto 50 different crossbars with defect probability p and
area a.

FIGURE 20 A 3-bit adder implemented as 2-level logic in a single diode
crossbar. Although this approach uses more diodes, it consumes less area,
avoids the feedback and regenerative buffers between stages, and will likely
offer less propagation delay. Inputs and outputs are labeled as in Fig. 20 (the
right-most column wire is not used in this circuit)

FIGURE 21 Relative area required to have at least 90% probability of being
able to find a correctly functioning 3-bit adder circuit as a function of defect
probability, p. Areas are relative to that required for a single-stage adder on
a defect-free crossbar

Figure 21 shows the results from our experiments of im-
plementing a 3-bit adder onto fixed-area crossbars. We see
a threshold behavior where Pcircuit, the probability of being
able to successfully map the adder onto the defective cross-
bar, drops abruptly over a fairly short range of p values. The
3-stage adder can tolerate higher defect rates than the single-
stage implementation. More details can be found in [21].

4.2 4-bit microprocessor

Next we consider the mapping of a more complex
application, a 4-bit microprocessor, onto a defective crossbar
fabric. The target fabric consisted of 64 identical logic blocks
implementing a variant of the complementary/symmetry ar-
ray (Fig. 6) combined with a routing network, creating a struc-
ture similar to that shown in Fig. 15. The routing network
contained abundant routing resources to ensure that any fail-
ure to map the application onto the fabric was caused by
an inability to allocate resources due to defects rather than
simple routing congestion. Defects were again limited to the
‘stuck-open’ type, randomly distributed throughout all junc-
tions formed by the crossing of two nanowires. Junctions
formed by a nanowire crossing a microwire were assumed to
be non-defective.

The 4-bit microprocessor was implemented in 143 lines of
C code. The instruction memory for the processor contained
a short program for implementing a two-pole, low-pass filter
using 18 words of six bits; this memory was included in the
compiled circuit. Figure 22 shows an example of the compi-
lation of the microprocessor onto the crossbar fabric. In this
particular case, 6% of all junctions have been marked defec-
tive (red x’s). The compiler routes around the defects, imple-
menting logic functions by allocating non-defective junctions
(yellow dots) and wires.

As was the case with the 3-bit adder, the manner in which
individual logic functions are synthesized affects the ability of
the compiler to successfully map onto the fabric. For this ap-
plication, we varied the maximum number of input variables,
m, that logic synthesis was allowed in creating a sum-of-
product representation of a logic function. For example, AND
gates with up to m inputs could implemented, while AND



SNIDER et al. Nanoelectronic architectures 1191

FIGURE 22 A portion of the experimental fabric configured with the microprocessor application. Junctions marked with red ‘x’s are assumed defective;
junctions with yellow dots are those which have been configured by the compiler

FIGURE 23 Area required for the 4-bit microprocessor as a function of
defect rate and the synthesis parameter inputs. The defect rate is the proba-
bility that a given nanowire/nanowire junction will be non-functional (‘stuck
open’). The inputs parameter is the maximum number of inputs allowed on
an AND gate – increasing inputs creates smaller, denser circuitry that is more
difficult to map onto defective fabrics

gates with m +1 inputs could not. Larger values of m produce
denser logic implementations, but these are also more difficult
to map onto defective crossbars.

Figure 23 summarizes experiments compiling the micro-
processor onto the fabric with varying defect rates and using
different values of the mapping parameter, m. We find that
small values of m yield circuits that are indeed easier to map

onto defective crossbars, but the lower density requires more
crossbar area to contain the less-dense circuit. Conversely,
higher values of m yield circuits that are denser and much
harder to map. The trade-off in selecting a value of m depends
upon the expected defect rate. For more details, see [47].

5 Fault tolerance

We distinguish faults (transient perturbations of
the circuit that could cause it to function incorrectly) from
defects (permanent flaws in the nanofabric). Faults, as we
have defined them, are also referred to as single-event up-
sets (SEUs) or soft errors. They can be caused by subatomic
particles striking a conductor within a circuit, briefly altering
the charge, and hence the voltage, in that conductor. Nano-
electronic structures will be more susceptible to faults than
conventional CMOS [38] since

(1) Fewer electrons will be used to represent logic states in
nanologic circuits, increasing their sensitivity to changes
in charge.

(2) Devices will likely have a much greater variability in de-
vice parameters, reducing voltage safety margins.

(3) Quantum probabilities will become more visible at the
nanoscale, so that devices may not behave as reliably or
predictably as one would like.



1192 Applied Physics A – Materials Science & Processing

Faults can cause both logic and memory devices to function
incorrectly, a fatal situation for sequential machines – once
a bit error occurs, is stored and fed back as part of the com-
putation, the final result will be, with very high probability,
incorrect. There are some computations where this is not the
case: infinite impulse response (IIR) digital filters, for ex-
ample, would tend to reconverge to a more-or-less correct
output given sufficient time following a fault. But most com-
putations are not so forgiving, and one must devise methods
for detecting faults when they occur and then somehow cor-
recting or masking them.

Circuits that continue correct operation in the presence
of random faults below some fault rate threshold are said
to be fault tolerant. All strategies for fault-tolerant design
use redundancy, either by replicating or augmenting circuitry
(spatial redundancy [35]), repeating a computation (temporal
redundancy [2, 37]), or a combination of the two.

5.1 Reliable logic

Spatial redundancy involves rewriting logic cir-
cuits such that internal variables (consisting of one or more
bits in the original circuit) are replaced with wider bit rep-
resentations chosen from a particular redundant code. Such
a code is carefully constructed so that all likely faults will
cause an affected variable to take on a bit pattern that is not
a legal member of the code. The presence of a non-codeword
in an internal variable is thus a signal that a fault has occurred,
and that error correction is required before the computation
can be continued.

The simplest such code is a replication code, which simply
repeats a bit value one or more times – if all replicants do not
agree on the value of the single bit in the original circuit that
they collectively represent, an error has occurred. Error cor-
rection in that case can be implemented with ‘voting’, using
a majority rule to select the ‘correct’ bit state, or with more
subtle schemes.

In one of the earliest papers addressing logic and faults [53],
von Neumann proposed two schemes for using such replica-
tion codes. The first, called N-modular redundancy, requires
N copies of a circuit (where N is an odd integer greater than
two) to execute in parallel, with the correct output determined
by majority voting. This approach is only effective if the voter
is much more reliable than the replicated circuits, and is there-
fore used chiefly at the system level where, for example, N
large computers execute the identical computation in paral-
lel while a small (and therefore more reliable) voter checks
their outputs for agreement. This is the approach taken in life-
critical space-flight applications [14]. Note that this will only
work if the probability of more than �N/2� systems failing
within the same voting interval is lower than some acceptable
threshold.

Von Neumann’s second approach, which has been called
‘parallel restitution’ by one author [45], works at the oppo-
site end of the circuit spectrum, using bit-level redundancy
to detect and correct errors at the gate level. This strategy re-
places each internal bit variable with a ‘bundle’ of bits that
collectively represent the original bit, and then replicates the
gate driving the original bit to the same degree. Ideally all bits
within the bundle would have the same logic value – faults,

though, will cause some of the bits to disagree with the others.
Instead of voting, von Neumann combined simple gates with
complex wiring in a clever way to create ‘stochastic ampli-
fiers’ that tend to reduce the disagreement within a bundle
without completely eliminating it. He was able to show that
such a scheme could maintain the coherence of a computation,
effectively correcting errors in place. The drawback is that the
required degree of replication can be extremely high, thou-
sands or more, depending on the error rate, making the scheme
impractical.

Between the system level and the gate level lie opportuni-
ties for more efficient codes than simple replication. Addition,
for example, is so highly structured that there exist error-
correcting codes that are much more efficient than replication
codes. Demultiplexing is another example of where this is
possible [48]. Hadjicostis has generalized this to observe that
efficient codes can be developed for group and semigroup op-
erations [17]. Other approaches between the system and gate
levels include microarchitectural [44], register transfer level,
and algorithm level recomputation [56].

Since error detection is generally easier than error correc-
tion, much work has been devoted to schemes (collectively
called concurrent error detection or CED [35]) that aim to en-
sure data integrity of logic systems. The goal is to construct re-
dundant circuits (called totally self-checking circuits [30, 54])
that are self testing and fault secure, meaning that they either
produce correct results or indicate that their output is incor-
rect. For replication codes, this implies that a mere doubling
of subsystems might be sufficient (as opposed to the tripli-
cation or worse required for majority voting schemes) – if
two copies of a subsystem produce results that disagree, an
error has occurred. The duplication can be identical, but it has
been shown that diverse duplication – two different imple-
mentations of the same logic function – is more robust against
multiple failures [36]. Non-replication codes for concurrent
error detection include parity prediction [1], Berger codes [3],
and Bose–Lin codes [10].

Figure 24 shows the basic CED approach for separable
codes, where check bits are generated from the input bits
and concatenated with a logic function’s output bits to create

FIGURE 24 A concurrent error detection (CED) scheme using a separable
code. Inputs to a logic function produce the normal logic output, but ad-
ditional circuity (the check-symbol generator) produces check bits that are
concatenated with the normal output bits to form an encoded result. This
result is then checked by a totally self-checking checker to verify that it is
a legal codeword. The output of the checker is itself encoded, usually using
a 2-bit, 1-of-2 code, so that faults within the checker are detected as well.
For example, an output of (1, 0) might signify a correct result, while any
other bit combination would flag an error in the logic function, check symbol
generator, or totally self-checking checker



SNIDER et al. Nanoelectronic architectures 1193

a coded output word. Separable codes have the desirable prop-
erty of trivial decoding, since the actual data is just a subset
of the encoded bits. This encoded output is checked with a
‘totally self-checking checker’ to verify that the output is, in
fact, a legal codeword. The output of the checker must be en-
coded with a redundant code to catch faults within the checker
itself. A concrete example of this using a parity-prediction
code is shown in Fig. 25. The top of the figure shows a 3-bit
incrementer implemented in diode and resistor crossbars – it
takes a 3-bit input and outputs the sum of that input and one,
modulo 8. A fault-tolerant version is shown at the bottom of
Fig. 25, using the scheme of Fig. 24. The 3-bit output of the in-
crementer is augmented with a single parity bit, p, produced
by the parity-predictor circuit to produce a 4-bit encoded re-
sult. The 4-bit output is a legal codeword only if it contains
an even number of 1’s, known as even parity. The totally self-
checking checker is composed of two parts, a parity generator,
which predicts the parity of the three output data bits, and
a totally self-checking equality checker, which compares the
generated parity bit with the predicted bit (they should be the
same). (Note that this is logically equivalent to checking the
combined four bits for even parity, but results in a smaller cir-
cuit.) The output of the equality checker is a two-bit code: an
output of (1, 0) implies a correct result, while (0, 1) implies
a fault in either the incrementer or the predictor; an output of
(1, 1) or (0, 0) implies a fault in the equality checker. This en-
coding presumes that no more than one fault occurs at a given
time anywhere in the circuit.

FIGURE 25 Adding concurrent error
detection to a 3-bit incrementer circuit.
The incrementer computes (input+1)
mod 8. The top figure (a) shows a cross-
bar implementation using diode/resistor
logic. The bottom figure (b) augments the
implementation to detect errors using the
scheme shown in Fig. 24. There is a con-
siderable increase in circuit size, and
additional buffers and inverters (whose
implementations are not shown) are re-
quired

Temporal redundancy approaches such as alternate-data
retry [46], recomputation with shifted operands [40], or delay-
line/latch comparison [37] trade off space and time. Gener-
ally, these approaches produce fault-tolerant circuits that are
smaller than spatially redundant circuits, at the cost of greater
execution time.

5.2 Reliable state machines

Building reliable state machines (computations
that require some internal variables to be stored and fed
back to the inputs) is much more challenging than reliable
logic [12, 13, 32, 39, 41, 57]. To start with, latches used to
hold state variables must be ‘SEU (single event upset) hard-
ened’ [4, 5, 42, 43, 55] so that state data is not altered once
stored. The latches must also be designed to work with the re-
dundant logic feeding its inputs, otherwise a glitch on a latch
input could result in the capturing of invalid data – it does no
good to reliably store a wrong answer.

One structure often implicitly used in fault-tolerant state
machines is the Muller C element or C gate [18]. The C gate,
used extensively in asynchronous circuit design, is a kind of
‘voting memory element’ that has two or more inputs: the
output of the gate remains the same until all of its inputs
change to a new value, at which point the output becomes the
agreed upon new input value. C gates therefore inherently fil-
ter out glitches on inputs as long as not all inputs glitch at
the same time. C gates on the outputs of duplicated subsys-



1194 Applied Physics A – Materials Science & Processing

tems thus provide a kind of voting system where the output of
the gate does not change unless both input subsystems agree
that a change is desired. Of course the output of a C gate can
glitch due to a subatomic particle strike as well, so it is ne-
cessary that the C gate be fused into the latch design [2, 37].
Even with SEU-hardened latches, though, it can still be desir-
able to use redundant codes for representing state variables.
Anghel’s dynamic C gate design [2] is easily mapped onto the
complementary/symmetry array (Fig. 26).

One interesting paradigm for building reliable nanoelec-
tronic state machines is ‘checkpoint/restart’: the correctness
of the state machine is checked at each cycle using one or
more concurrent error detection schemes, and computation is
allowed to continue only if no error is detected. If an error
occurs, the state machine is ‘rolled back’ to the beginning of
the cycle and the computation is retried. This makes the exe-
cution time of a computation non-deterministic, but provides
a graceful degradation as fault rates increase – the computa-
tion simply slows down. Of course there will exist a threshold
fault rate, above which the circuit will simply be unable to
make much forward progress. The number of retries is typic-
ally limited to some maximum value in order to detect either
excessive fault rates or a post-manufacturing-induced defect
(which can be handled by reconfiguration).

FIGURE 26 A dynamic implementation of an inverting C gate in the
complementary/symmetry array. If both inputs, A1 and A2, agree, then the
output will be equal to their complement. If either of the two inputs ‘glitches’,
the output will be undriven for the duration of the glitch. Assuming sufficient
capacitance on the output, and assuming that the glitch duration is not too
long, the output will hold its state, effectively filtering out the glitch

FIGURE 27 A delay line preceding a C-gate-based latch creates a ‘glitch’
filter that can prevent transient errors in the output of a logic function from
being captured in the latch. The delay must be longer than the longest dura-
tion expected for any single-event upset

Nicolaidis’s time-redundancy scheme [37], sketched in
Fig. 27, is a promising approach that avoids logic replication
or additional coding circuitry. Here the output of a logic func-
tion is copied and fed to a delay line. The original output and
delayed output are then fed to the inputs of a C gate. As long
as the delay introduced by the delay line is longer than the
maximum length of a transient pulse due to a single-event up-
set, the C gate will act as a ‘glitch filter’, preventing erroneous
transients from being captured in the latch.

It is unlikely that a single fault-tolerance scheme will
be sufficient for all applications being mapped onto a nano-
electronic substrate. There are scenarios where N-modular
redundancy would be most appropriate because of its sim-
plicity and non-invasive approach, and other situations (such
as systolic computations) where one can capitalize on ei-
ther the algorithmic structure or efficient coding to reduce
the overhead of fault tolerance when this is economically
desirable. It is partly for this reason that we have chosen
a compilation approach to nanoelectronic architecture: a com-
piler can automate the process of analyzing the application
to be mapped to the nanohardware, select the most appro-
priate fault-tolerance strategy (under constraints supplied by
the designer), and automatically implement the sometimes
difficult and intrusive transformations needed to achieve fault-
tolerance goals.

6 Conclusion

Shrinking electronics to the nanoscale will bring
huge challenges that can be met by intelligent architecture
– simplified structures to make manufacturing easier, recon-
figurability and redundancy to make circuit implementation
possible in the presence of defects, and appropriate strategies
implemented by a compiler to deal with run-time faults.

ACKNOWLEDGEMENTS We thank Institute of Physics Pub-
lishing for granting permission to reproduce several figures (1, 4, 6, 7, 13, 14,
15, 22, and 23) from an earlier paper [47]. Some of the research performed in
the Quantum Science Research group of HP labs is supported by the Defense
Advance Projects Agency (DARPA).

REFERENCES

1 S. Almukhaizim, Y. Makris: ‘Fault Tolerant Design of Combinational
and Sequential Logic Based on a Parity Check Code’. In: Proc. 18th
IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems, 3–5
November 2003, Boston, MA, USA, pp. 563–570

2 L. Anghel, D. Alexandrescu, M. Nicolaidis: ‘Evaluation of a Soft
Error Tolerance Technique Based on Time and/or Space Redundancy’.
In: Proc. 13th Symp. Integrated Circuits and Systems Design, 18–24
September 2000, Manaus, Brazil, pp. 237–242

3 J. Berger: Inf. Control 4, 68 (1961)
4 D. Bessot, R. Velazco: ‘Design of SEU-hardened CMOS Memory Cells:

the HIT Cell’. In: Second Eur. Conf. Radiation and its Effects on Com-
ponents and Systems (RADECS 93), 13–16 September 1993, Saint-Malo,
France, pp. 563–570

5 T. Calin, M. Nicolaidis, R. Velazco: IEEE Trans. Nucl. Sci. 43, 2874
(1996)

6 Y. Chen, G. Jung, D. Ohlberg, X. Li, D. Stewart, J. Jeppesen, K. Nielsen,
J. Stoddart, R. Williams: Nanotechnology 14, 462 (2003)

7 Y. Chen, R.S. Williams: Configurable nanoscale crossbar electronic cir-
cuits made by electrochemical reaction, US Patent No. 6 518 156 (2003)

8 C. Collier, E. Wong, M. Belohradsky, F. Raymo, J. Stoddart, P. Kuekes,
R. Williams, J. Heath: Science 285, 391 (1999)

9 B. Culbertson, R. Amerson, R. Carter, P. Kuekes, G. Snider: ‘Defect Tol-
erance on the Teramac Custom Computer’. In: Proc. 1997 IEEE Symp.



SNIDER et al. Nanoelectronic architectures 1195

FPGA’s from Custom Computing Machines (FCCM ’97), Napa Valley,
CA, USA, pp. 116–123

10 D. Das, N. Touba: J. Electron. Test.: Theory Appl. (JETTA), 15, 145
(1999)

11 A. DeHon: IEEE Trans. Nanotechnol. 2, 23 (2003)
12 P. Drineas, Y. Makris: ‘Non-Intrusive Design of Concurrently Self-

Testable FSMs’. In: Proc. 11th Asian Test Symp. (ATS’02), Guam, USA,
18–20 November 2002, pp. 33–38

13 P. Drineas, Y. Makris: ‘Non-Intrusive Concurrent Error Detection in
FSMs through State/Output Compaction and Monitoring via Parity
Trees’. In: Proc. Design, Automation and Test in Europe Conference
and Exhibition (DATE ’03), Messe Munich, Germany, 3–7 March 2003,
pp. 1164–1165

14 J. Gaisler: ‘Concurrent Error-detection and Modular Fault Tolerance in
a 32-bit Processing Core for Embedded Space Flight Applications’. In:
Proc. 24th Annu. Int. Symp. Fault-Tolerant Computing, Austin, Texas,
15–17 June 1994, pp. 128–130

15 S. Goldstein, M. Budiu: ‘NanoFabrics: Spatial Computing Using Mo-
lecular Electronics’. In: Proc. 28th Int. Symp. Computer Architecture,
ISCA, 2001, 30 June–4 July 2001, Goteborg, Sweden, pp. 178–191

16 L.J. Guo, P.R. Krauss, S.Y. Chou: Appl. Phys. Lett. 71, 1881 (1997)
17 C. Hadjicostis: Coding Approaches to Fault Tolerance in Combina-

tional and Dynamic Systems (Kluwer Academic Publishers, Boston,
Dordrecht, London 2002)

18 S. Hauck: Proc. IEEE 83, 69 (1995)
19 J. Heath, P. Kuekes, G. Snider, R.S. Williams: Science 280, 1716 (1998)
20 J. Heath, M. Ratner: Phys. Today, May, 43 (2003)
21 T. Hogg, G. Snider: Defect-tolerant logic with nanoscale crossbar cir-

cuits, submitted to IEEE Trans. Nanotechnol.
22 Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.H. Kim, C.M. Lieber:

Science 294, 1313 (2001)
23 G.Y. Jung, S. Ganapathiappan, D.A.A. Ohlberg, D.L. Olynick, Y. Chen,

W.M. Tong, R.S. Williams: Appl. Phys. 78, 1169 (2004)
24 G.Y. Jung, S. Ganapathiappan, D.A.A. Ohlberg, D.L. Olynick, Y. Chen,

W.M. Tong, R.S. Williams: Nano Lett. 4, 1225 (2004)
25 P.J. Kuekes, R.S. Williams, J.R. Heath: Molecular wire crossbar mem-

ory, US Patent No. 6 128 214 (2000)
26 P. Kuekes, R.S. Williams: Demultiplexer for a molecular wire crossbar

network, US Patent No. 6 256 767 (2001)
27 P.J. Kuekes, R.S. Williams, J.R. Heath: Molecular-wire crossbar inter-

connect (MWCI) for signal routing and communications, US Patent No.
6 314 019 (2001)

28 P. Kuekes: Molecular crossbar latch, US Patent No. 6 586 965 (2003)
29 P.J. Kuekes, R.S. Williams: Molecular wire transistor (MWT),

US Patent No. 6 559 468 (2003)
30 P. Lala: Fault Tolerant and Fault Testable Hardware Design (Prentice-

Hall, London 1985)
31 B. Landman, R. Russo: IEEE Trans. Comput. 20, 1469 (1971)
32 C. Metra, S. Di Francescantonio, M. Omana: ‘Automatic Modification

of Sequential Circuits for Self-Checking Implementation’. In: Proc. 18th
IEEE Int. Symp. Defect and Fault Tolerance in VLSI Systems (DFT ’03),
03–05 November 2003, Boston, MA, USA

33 Y. Luo, C. Collier, J. Jeppesen, K. Nielsen, E. Delonno, G. Ho,
J. Perkins, H. Tseng, T. Yamamoto, J. Stoddart, J. Heath: Chem. Phys.
Chem. 3, 519 (2002)

34 M. Mishra, S. Goldstein: ‘Defect Tolerance at the End of the Roadmap’.
In: Proc. Int. Test Conf. 2003 (ITC 2003), 30 September–2 October 2003,
Vol. 1, Charlotte, NC, USA, pp. 1201–1210

35 S. Mitra, E. McCluskey: ‘Which Concurrent Error Detection Scheme
to Choose?’. In: Proc. Int. Test Conf. 2000, 3–5 October 2000, Atlantic
City, NJ, USA, pp. 985–994

36 S. Mitra, E. McCluskey: ‘Design Diversity for Concurrent Error De-
tection in Sequential Logic Circuits’. In: Proc. 19th IEEE VLSI Test
Symp. (VTS 2001), 29 April–3 May 2001, Marina Del Rey, CA, USA,
pp. 178–183

37 M. Nicolaidis: ‘Time Redundancy Based Soft-error Tolerance to Rescue
Nanometer Technologies’. In: Proc. 17th IEEE VLSI Test Symp., 25–29
April 1999, San Diego, CA, USA pp. 86–94

38 P. Packen: Science 24, 2079 (1999)
39 R. Parekhji, G. Venkatesh, S. Sherlekar: ‘Concurrent Error Detection

Using Monitoring Machines’. In: IEEE Design and Test of Computers,
Fall 1995, Vol. 12, No. 3, pp. 24–32

40 J. Patel, L. Fung: IEEE Trans. Comput. C 31, 589 (1982)
41 S. Piestrak: ‘Limitations of Design Methods for Self-Checking Syn-

chronous Sequential Machines’. FastAbstract 29th Int. Symp. Fault-
Tolerant Computing, Madison, Wisconsin, 15–18 June 1999, Session
6C: Fast Abstracts I, Madison, WI, USA

42 L. Rockett: Science 35, 1682 (1988)
43 L. Rockett: Single-event upset hardened reconfigurable bi-stable CMOS

latch, US Patent No. 6 369 630 (2002)
44 E. Rotenberg: ‘AR-SMT: A Microarchitectural Approach to Fault Tol-

erance in Microprocessors’. In: Proc. 29th Fault-Tolerant Computing
Symposium, 15–18 June 1999, Madison, WI, USA, pp. 84–91

45 A. Sadek, K. Nikolic, M. Forshaw: Nanotechnology 15, 192 (2004)
46 J. Shedletsky: IEEE Trans. Comput., February, 106 (1978)
47 G. Snider, P. Kuekes, R.S. Williams: Nanotechnology 15, 881 (2004)
48 G. Snider, W. Robinette: Crossbar demultiplexers for nanoelectronics

based on N-hot codes, to appear in IEEE Trans. Nanotechnol.
49 G. Snider, P. Kuekes: Nano state machines using hysteretic resistors and

diode crossbars, in preparation
50 G. Snider, P. Kuekes, R.S. Williams: Configurable molecular switch ar-

ray, US Patent Application Publication No. US 2004/0041617 A1, 4
March 2004

51 M. Stan, P. Franzon, S. Goldstein, J. Lach, M. Ziegler: Proc. IEEE,
November, 1940 (2003)

52 D.R. Stewart, D.A.A. Ohlberg, P.A. Beck, Y. Chen, R.S. Williams,
J.O. Jeppesen, K.A. Nielson, J.F. Stoddart: Nano Lett. 4, 133 (2004)

53 J. von Neumann: ‘Probabilistic Logics and the Synthesis of Reliable Or-
ganisms from Unreliable Components’. In: Automata Studies (Princeton
University Press 1956) pp. 43–98

54 J. Wakerly: Error Detecting Codes, Self-Checking Circuits and Applica-
tions (Elsevier/North-Holland, New York 1978)

55 S. Whitaker, J. Canaris, K. Liu: Nucl. Sci. 38, 1471 (1991)
56 K. Wu, R. Karri: IEEE Trans. Computer-Aided Design Integr. Circuits

Syst. 21(9), 1077 (2002)
57 C. Zeng, N. Saxena, E. McCluskey: ‘Finite State Machine Synthesis

with Concurrent Error Detection’. In: Proc. ITC Int. Test Conf., 27–30
September 1999, Atlantic City, NJ, USA, pp. 672–679

58 Z. Zhong, D. Wang, Y. Cui, M. Bockrath, C. Lieber: Science 302, 137
(2003)


