
10.12.2002. PG. 1

VERILOG PRIMER

Primer, Introduction and Examples

Table of contents:

Preface 2

Conventions Used 2

UNIX Primer 3
Basic UNIX Instructions 3

About UNIX 3

Verilog Primer 4

UNIX preparation 4

Starting Verilog 4

Entering the description 5

Compiling the description 6

Elaborating the description 6

Simulating the testbench 8

Displaying internal signals 9

The Structure of Verilog Models 10

Verilog Coding Examples 12

The most simple multiplier 12

Multiplier circuit (RTL) 13

Sigma-Delta A/D-Converter 16

Small examples 21

For students designing and testing VLSI integrated circuits at the VLSI laboratory of
the Dept. of Electron Devices (V2-324) using the CADENCE Verilog simulator

environment on Sun workstations under the UNIX Operating System.

Budapest, the 10. 12. 2002.

Peter Gärtner.

Ez a segédanyag megtalálható: \\FERMI\gaertner\Verilog\vprimer.doc

10.12.2002. PG. 2

Preface

This manual is primarily intended for students designing and testing VLSI integrated circuits
or parts thereof at the VLSI laboratory of the DED (V2-324) using the CADENCE Verilog
simulator environment on Sun workstations under the UNIX Operating System.

For doing this work, first of all, you have to acquire from the system manager a personal user
account in the Sun Network with UID and password.

This manual consists of four main parts:

� Primer for UNIX, for persons who have not yet worked with UNIX. It provides the
minimum necessary knowledge to have some orientation in the operating system and to
start Verilog.

� Primer for Verilog, to start the tool and learn the simplest steps for entering the circuit
description and doing the simulation.

� A short introduction to the structure of Verilog models.

� Two full examples of circuits/systems descriptions and a collection of small examples.
In this primer the words description, model and module will be used as synonyms for Verilog
code units.

Eventually it should be mentioned, too, what this manual does not comprise: circuit theory
and a detailed description of the Verilog language.

Experience with Windows on PCs is of advantage. In spite of running under UNIX the
window system of CADENCE shows much similarity with Windows.

Conventions Used
There are several conventions used in this manual. The mouse of the Sun machines has three
buttons. In the following there is some terminology explained which will be used in relation
to mouse operations.

click left press and release the left mouse button (quickly)

click middle press and release the middle mouse button (quickly)

click right press and release the right mouse button (quickly)

drag left press and hold the left mouse button while moving the mouse

drag middle press and hold the middle mouse button while moving the mouse

drag right press and hold the right mouse button while moving the mouse

If more than one CADENCE window is open then the relevant window will be specified by
adding WWW: for the window WWW.

If a double target xxx->yyy is specified with clicking, that may happen to be two separate
clicks at xxx and yyy or a drag from xxx to yyy, depending upon how the popup menu for yyy
comes up.

<...> press the key on the keyboard that corresponds to what is inside the
brackets (either a character or a special key like CR (carriage return or
enter), ESC (escape), SHIFT, CTRL, ALT.

type something you should type (verbatim) whatever is printed boldfaced.

10.12.2002. PG. 3

UNIX Primer

Basic UNIX Instructions
(Unix instructions have to be typed in a command (’shell’) window. All instructions have to
be terminated with <CR>!)

ls list: lists elements of a directory by their names

ls –l list long: detailed listing of a directory: access right, owner, length,
date, name

ls –a list all: list including the hidden files too (beginning with '.')

ls –al list all long: detailed long listing of all files

ls –lt long listing ordered by the time of generation

mkdir dirname make directory named dirname

rmdir dirname remove (delete) directory dirname (only if the directory is empty)

rm filename remove (delete) the file filename

rm -r dirname delete the directory dirname with all its contents (hierarchical! USE IT
WITH CAUTION!!)

du disk usage lists the complete hierarchy downwards with size (1 kByte blocks)

cd subdir change directory to subdir

cd change directory to the home directory of the user

textedit filename opens the file filename for editing (new file if filename does not exist)

About UNIX
After logging in you are at the highest level of your user account. This is your Home
Directory, which can be referred to by the tilde '~' character. UNIX comes up with an xterm
window which is mainly for the messages of the operating system and does not have a scroll
bar. Left click at the left button in the upper right corner so the window becomes an icon in
the bottom bar. Then with a left click a menu pops up. Left click Shells->Cmdtool. A
command shell will be opened with a vertical scroll bar. This window can be your workhorse
as long as you are working direct with UNIX.

The directory where you are can be represented by the dot '.', the preceding higher level
directory by two dots '..'.

Typing ls -al you will find among others the file .cshrc which contains settings for the
operating system. (If it does not yet exist you may open a new one with the editor.) The
following three lines show examples for your own usage:

alias lth 'ls -lt | head' If you type lth then UNIX will produce a time-ordered list of
the ten most recent files - an alias which can be favourably used for checking the recent
changes in the directory.

alias ed 'textedit \!*&' Instead of textedit xxx you can simply type ed xxx and the
editor will start with the file xxx. The ampersand '&' will make the editor start as a stand-alone
process so that your window remains free for other work.

Any change in .cshrc will be effective only after your next logging-in.

10.12.2002. PG. 4

HINT: If you copy ~gaertner/.cshrc to your home directory then you will have these and
several other features in your account:

cp ~gaertner/.cshrc . <CR>
When already copied, you can add other aliases for your personal usage, too.

Verilog Primer

The objective of this primer is to teach a quick and easy start into the CADENCE system
without going into details. Going through this primer some simple circuit model will be
simulated making the following steps:

� entering the description

� compiling the description

� elaborating the description

� simulating the testbench.
The description of these basic steps is completed by additional explanations on how to have
internal signals displayed on the screen.

UNIX preparation
Create a directory for your Verilog activities on UNIX level, for instance myveri:

mkdir myveri<CR>
Then change the directory to it:

cd myveri<CR>
Here create a new directory for your Verilog source files, the best name for it would be
source:

mkdir source<CR>
The working environment of Verilog is now prepared. If you want to, you may start the text
editor by typing textedit Filename.v and start writing the Verilog source code of your model.
But you can do that inside Verilog, too.

Starting Verilog
Middle click at an empty place of the screen. The Eng. Tools popup window opens. Make a
left click at Simulators->Verilog/VHDL. A new UNIX shell comes up and asks for the
Verilog home directory. Type the name of the recently created directory, e.g. myveri<CR>.
The main window of Verilog NCLaunch appears (Fig. 1.). On the top of it you find a menu
bar. Click at Edit->Preferences. The Preferences dialog box appears (Fig. 2.). In the first line
check the entry Editor Command. If it does not read textedit %F then replace it with this
command. Thereby you specify the regular text editor of the UNIX operating system. Enter it
by clicking at the OK button.

10.12.2002. PG. 5

Fig. 1. Verilog main window
Before NCLaunch appears CADENCE may ask you the question in another dialog box if you
want to use the three-pass procedure or the direct (one-pass) procedure. Choose the three-pass
procedure because it provides you with better error checks and easier correction possibilities.

Fig. 2. Specifying the text editor of Unix

Entering the description
Click at File->Edit New File. The Edit a New File dialog box opens (Fig. 3.). Under its title

Fig. 3. Specifying the file to be edited
bar it shows the actual directory of the editor, most likely the recently specified myveri.
Underneath you can see the content of this directory. The only content is probably the
subdirectory source that you have recently created. Make a left double-click at it. The
specified directory will change to myveri/source and underneath the content is empty.

10.12.2002. PG. 6

Now enter into the box File name the name of your first Verilog project, for instance first.v
and click at the Save button. The Edit a New File box disappears and the UNIX text editor
opens with first.v in the title bar. The system is ready to accept your first Verilog project.
Enter some simple demo-project, such as rsln and test_rsln from the pages 10/11. Make a left
click at File->Save when you have finished the entry. For the time being, the editor is no
more necessary, it is left to you to close or to iconify it. (If iconified, you can easier access it
if you have to correct some error in the description.)

The aim is to simulate the module described in the file first.v. To do so the description has to
be processed in two steps, compilation and elaboration. At this point it is worth while
mentioning that compilation is analogous to that of computer programs. Each module is taken
one by one and translated into an internal format (such as object files in computers).
Elaboration does some kind of linking the modules with each other to form a simulatable unit.

Compiling the description
By a left click select the file first.v in the browser pane on the left part of the NCLaunch
window. The file name will be highlighted. Left click Tools->Verilog Compiler. The
Compile Verilog window opens (Fig. 4.). Check wether the entry in the file box is correct –

Fig. 4. Compiler window
it should contain the selected file (..../myveri/source/first.v). The checkbox Work Library is
checked (brown) and the name defaults to worklib. Left click at the OK button. The compiler
starts and writes some message into the command line pane at the bottom of the NCLaunch
window. If there are errors in your source file first.v then you have to correct them in the
editor window and, after saving the corrected version, repeat the compilation.

Meanwhile the module browser pane on the right part of the NCLaunch window displays the
module tree, similar to the file tree on the left. It contains several library entries such as ieee
and std. The last one is your working library worklib marked with a reddish-yellow hat. The
sub-entries of worklib are your new modules which you described in first.v.

Elaborating the description
In the main window the + signs in the little box left of the sub-entry indicate that they, too,
contain subentries. Click at them and the leafs of the module tree appear, having the simple
name module. Select by a left click the module on the highest hierarchical level, which is that
of the testbench (Fig. 5.).

10.12.2002. PG. 7

Fig. 5. Selecting the module to be elaborated
Notice that only after you have selected a module, the icon of the elaborator (third from left
among the tools in the icon bar, showing sheets of paper and a clip) will be enabled. Now it
would be time to click at it, starting the elaborator. However, at the very first elaboration, the
procedure is different.

Fig. 6. The window of the elaborator
You have to make a left click at the menu item Tools->Elaborator which invokes the dialog
box Elaborate (Fig. 6.). Check the followings: The Design Unit field should contain the name
of your module. The checkbox Work Library should be checked (brown) and the field contain
worklib. Access Visibility should also be checked and set to All. Correct the settings if
necessary and click at the OK button. The elaborator starts and, after a while, some message
appears in the command line pane. Check if there are errors reported.

After successful elaboration you can open the Snapshots
folder in the module pane and you will find there your
testbench module prepared for simulation (Fig. 7.).

 Fig. 7. The elaborated module

10.12.2002. PG. 8

Simulating the testbench
Select the snapshot of the testbench module by a left click and then click at the icon of the
simulator, fourth from left among the tools (or Tools->Simulator in the menu bar). The
Cadence NC Verilog simulator window opens (Fig. 8.).

Fig. 8. The simulation window
The upper pane shows the source code of the actual scope, as a default the highest level, that
is the testbench itself. Above the pane you can read the simulation time which is, before the
start, zero. Later on, if you make several runs, you will have to left click Cadence NC
Verilog:File->Reset Simulation before each new run.

Left click Select->Signals in the menu bar. In the source code
all the signals appear highlighted (Fig. 9.). Now left click at
Windows->Waveform. It takes some time (about 2 to 3
minutes!) till the window SimVision: Waveform opens (Fig.
10.). The waveform pane is still empty but the list of signals Fig. 9. Highlighted names
should be displayed in the left pane.

Fig. 10. The waveform window

10.12.2002. PG. 9

Now the simulation can be started by a left click on the big black triangle on the left side of
the icon bar of the window Cadence NC Verilog. The simulation completes very quickly and
the waveforms appear in the great pane of the waveform window (Fig. 11.). Above the upper

Fig. 11. The result of the simulation
right corner you can find zooming buttons. At the upper left corner there are the small red
flags of the cursors. They can be dragged by the left mouse button. In the narrow pane
between the signal list and the waveform the signal values can be read, at the simulation time
indicated by the cursor TimeA.

Displaying internal signals
So far only the signals of the highest level have been displayed. It is possible to go down in
the hierarchy and display internal signals as well. Between the two large panes of the window
Cadence NC Verilog there is the field for selecting the scope of the display. By clicking right
of the Subscopes box at the small button with the black triangle a dropdown list appears
showing the internal modules of the simulated system (Fig. 12.). Selecting one of them the
actual source code text appears in the source code pane.

Fig. 12. Down in the hierarchy
If you need all the signals of the internal module then you can select them by means of the
menu bar, with a left click at Select->Signals. Usually only some of them are needed. In such
a case you can left click at them in the source code one by one. From the second one on,
however, you have to keep the control key <CTRL> depressed. The selected signals will be
highlighted. Having selected the signals you can transfer them into the waveform window by
left clicking at the waveform button in the icon bar of SimVision: Waveform 1 (sixth one from
right).

10.12.2002. PG. 10

The Structure of Verilog Models

In the followings a simplified description of Verilog models is presented. It will help you to
build your first Verilog descriptions. The basic unit of Verilog descriptions is the module. It is
delimited with the keywords module and endmodule. It exchanges information with the rest of
the world via input and output (or bidirectional inout) ports. The ports have to be given in the
port list, and the elements of the list have to be declared if they are input, output or inout. If a
port is not only a single signal but a bus or vector then its width has to be declared as well.
Accordingly, the frame of the module surrounding the body should look like this:

 module name(p1, p2, p3, ... pn);
 input p1, p2;
 input [msb1 : lsb1] p3;
 output p4, p5;
 output [msb2 : lsb2] p6;
 ...
 ...
 Body of the module
 ...
 ...
 endmodule

The body of the module has to do the processing of the input signals to form the outputs.
Outputs have to be driven by elements capable of driving. Such elements are:

� registers (abstraction of a flipflop),
� logic gates (generic gate functions),
� continuous assignments (abstraction of a combinational logic function),
� other modules instantiated in the body of the module and having an output which is

driven by a driving element inside.

Registers have to be declared. They receive their values assigned
in procedural assignments inside procedures such as initial and
always. Their identifiers can be used similarly as wires driving
inputs of other elements and the outputs of the module. This
construct is illustrated by the following RS-latch description,
consisting of a cross-coupled nand pair: (Fig. 13.)

module rsl1(q, qn, preset, clear);
 output q, qn;
 input preset, clear;
 reg q, qn;

 always @(preset or qn)
 #1 q = !(qn && preset);

 always @(clear or q)
 #1 qn= !(q && clear);

endmodule

The outputs of the nand gates q and qn are declared as registers. Their functions form an
always procedure each, reacting to any change at their inputs. Both have unit delay.

QNQ

CLEAR PRESET
Fig. 13. RS-latch

10.12.2002. PG. 11

The same RS-latch can be modelled by built-in generic gates of Verilog. In this case wires
have to be declared as connecting elements between the parts of the model. The wires cannot
drive by themselves but they are driven by the outputs of the gates. The model of the same
function is:
module rsl2(q, qn, preset, clear);
 output q, qn;
 input preset, clear;
 wire q, qn;

 nand #1 // declare two nand gates with unit delay
 g1(q, qn, preset),
 g2(qn, q, clear);

endmodule

In this description of the latch the declaration of the wires q and qn could be omitted because,
by using their names in the context, the compiler recognizes their role as wire and
automatically declares them (implicite wire declaration).

A third possible description of an RS-latch can be done by means of continuous assignments.
Here again wires perform the connections and, again, they are in the context implicitly
declared:
module rsl3(q, qn, preset, clear);
 output q, qn;
 input preset, clear;
// wire q, qn; Not necessary because of implicite wire declaration

 assign #1 q = !(qn && preset);
 assign #1 qn= !(q && clear);

endmodule

If the model of a circuit (or a function) has been constructed then the next step is verifying it
by simulation. For this purpose a testbench is needed, which contains an instance of the model
and provides the stimuli.

The testbench is also a module but a special one which does not have in- and outputs. Instead,
the test-bench forms the external world for the model to be tested. The driving signals have to
be generated here as well as the outputs of the model have to be received and, if necessary,
processed. (The necessity may arise if the output signals are in their, in the model generated,
"natural" form not directly evaluatable. For instance, often it is easier to eveluate the output of
a model after a serial/parallel conversion.) Also, the test-bench provides the load for the
outputs of the model - simulating its working environment.

Here follows a testbench for the RS-latch. When making the instance you can choose which
model you put into the testbench and simulate, rsl1, rsl2 or rsl3:
module rslx_test;
 wire q, qn; // declare two wires to receive outputs
 reg preset, clear; // declare two input variables
 parameter d = 10; // used as the waveform time step

// create an instance of the RS-latch

 rsl1 latch(q, qn, preset, clear);

10.12.2002. PG. 12

// stimulus description - assigns values to inputs

 initial // runs only once
 begin
 preset = 0; clear = 1;
 #d preset = 1;
 #d clear = 0;
 #d clear = 1;
 end

endmodule

Verilog Coding Examples

The following examples illustrate the construction of the description of circuits and functions
by means of the Verilog HDL. They are furnished with ample comments for the sake of
readability and understandability. For the same purpose indentation has been thoroughly
applied. They should help you build your own modules. Two full (simulatable) descriptions
are given with test-bench. The multiplier shows two versions of the same problem. The first
version is the simplest possible behavioural description of an 8 by 8 bit multiplier. It just
multiplies the two numbers producing the 16-bit result. The second version was modelled
with practical realizability (and possible synthesis) in mind, and, in addition, the realized (not
really but possibly synthesized!) circuit is presented (Figs. 14. and 15.).

The second example is an analog/digital converter (ADC). It is a mixed-signal system in that
its input is an analog signal which is connected to an analog comparator. The reference input
of the comparator gets feed-back from the output of the comparator integrated by an RC
integrator circuit. These parts of the system are described only on the behavioural level. The
rest of the system is fully digital and is modelled again with synthesis in mind. Here, too, the
circuit realization is also given (Fig. 16.).

These full examples are followed by several small illustrations of different Verilog constructs.
Lines of dots serve as delimiters between them.

// The most simple multiplier (behavioural description)

// using a continuous assignment and zero delay

`timescale 100ns/1ns

module szorzo(szorzat, szorzando, szorzo);
output [15:0] szorzat;
input [7:0] szorzando;
input [7:0] szorzo;

wire [15:0] szorzat;

assign szorzat = szorzando * szorzo;

endmodule // end of the multiplier module

module tb_szorzo; // Testbench of the multiplier

wire [15:0] product;

10.12.2002. PG. 13

reg [7:0] multiplicand;
reg [7:0] multiplier;

szorzo mult(product, multiplicand, multiplier);

initial
 begin
 multiplicand = 8'h3;
 multiplier = 8'h0;
 #10 multiplier = 8'h4;
 #10 multiplier = 8'h6;
 #10 multiplier = 8'h8;
 #10 $finish;
 end

endmodule

//..

// Multiplier circuit (detailed RTL description)

// Described on RTL-level with accumulator register
// and conditional expression which is meant for
// directing synthesization to creating optimal structure.
// The first module describes the data path, controlled
// by an instance of the controller which is described
// in a separate module

`timescale 1ns/1ns // time unit = 1 nanosec

module szorzo(szorzat, szorzando, szorzo, start, clock);
output [15:0] szorzat; // product
input [7:0] szorzando; // multiplicand
input [7:0] szorzo; // multiplier
input start, clock;

reg [15:0] szorzat;
wire [3:0]q;
wire clear;
reg [15:0] akku; // accumulator

ctrl ct(q, clear, start, clock); // controller instantiated

always
 begin : mul // The process is given the name mul
 @(posedge clock)
 if (clear == 1'b1) akku = 16'h0000;
 if ((q<8) && (q>=0))
 akku = szorzo[q]
 ? {akku[14:0], 1'b0} + {8'h00, szorzando[7:0]}
 : {akku[14:0], 1'b0};
 if (q == 4'h0) szorzat = akku;
 end

endmodule

10.12.2002. PG. 14

// Testbench of the multiplier

module tb_szorzo;

parameter cp = 100; // clock period = 100 nsec

wire [15:0] zat; // product
reg [7:0] zando; // multiplicand
reg [7:0] zo; // multiplier
reg start, clock;

szorzo mult(zat, zando, zo, start, clock); // multiplier instance

initial // stimuli
 begin
 clock = 0;
 start = 0;
 zando = 8'h3;
 zo = 8'h0;
 #2000 zo = 8'h4;
 start = 1;
 #cp start = 0;
 #1900 zo = 8'h6;
 start = 1;
 #cp start = 0;
 #1900 zo = 8'h8;
 start = 1;
 #cp start = 0;
 #1900 $finish;
 end

always #(cp/2) clock = ~clock; // clock generator

endmodule

//..
// ctrl.v -- controller for the multiplier
// activated by a pulse at the input start

module ctrl(q, clear, start, clock);

Fig. 14. The data-path of the multiplier

10.12.2002. PG. 15

output [3:0] q;
output clear;
input start, clock;

reg [3:0] q;
reg clear;

initial
 begin
 clear=0;
 q = 4'h9;
 end

always @(posedge clock)
 begin
 if (start==1 && q == 4'h9)
 begin
 clear = 1'b1;
 q = q - 4'h1;
 end
 else if (q == 4'h8)
 begin
 clear = 1'b0;
 q = q - 4'h1;
 end
 else if (q < 4'h8)
 q = q - 4'h1;
 if (q == 4'hf) q = 4'h9;
 end

endmodule

// Sigma-Delta A/D-Converter
// =========================

// Test-bench for Sigma-delta

`timescale 1ns/1ps

// Prescribing actual parameter values for parametrizable
// models (annotation)

Fig. 15. The controller of the multiplier

10.12.2002. PG. 16

module annotate;

parameter WW=5; // A/D conversion with WW=5 bit resolution

 defparam tb_sigdel.sd.WW = WW;
 defparam tb_sigdel.sd.tim.WW = WW;
 defparam tb_sigdel.sd.cnt.WW = WW;
 defparam tb_sigdel.WW = WW;
 defparam tb_sigdel.CP = 100; // Clock periode is 100 nsec

// Integrator time-constant:

 defparam tb_sigdel.sd.v2p.rci.RC = 2000;

endmodule // end of the annotation

module tb_sigdel; // begin of the test-bench

parameter WW=8, CP=1000; // Parameters superseded by annotation

reg [15:0] uin; // Quasi-analog input voltage
reg clock;
wire [(WW-1):0] q; // Converted result
wire rdy; // Conversion done

sigmadelta sd(q, rdy, uin, clock); // instance of the converter

always #(CP/2) clock = ~clock; // clock generator

initial // specifying (quasi-)analog input voltages
 begin
 clock = 0;
 uin = 0;
 #250 uin = 16'h7000;
 #5000 uin = 16'hffff;
 #15000 uin = 16'h9000;
 #5000 uin = 16'h0;
 #15000 $finish;
 end

endmodule

//..

// Sigma/Delta A/D-Converter

module sigmadelta(qq, rdy, uin, clock);
output qq;
output rdy;
input [15:0] uin;
input clock;

parameter WW=8;

wire [(WW-1):0] q;
wire rdy, ss;

// the output register qq captures and holds the converted
// value till the next conversion is done

10.12.2002. PG. 17

reg [(WW-1):0] qq;
initial qq=0;
always @(posedge clock)
 if (rdy) qq = q;

volt2puls v2p(ss, uin, clock); // voltage/pulse converter
counter cnt(q, ss, rdy, clock); // ones´s counter
timer tim(, rdy, clock); // time basis, output q is not used

endmodule

//..

// Voltage-to-pulses converter, converts analog voltage to a
// stream of pulses

module volt2puls(q, uin, clock);
output q;
input uin;
input clock;

// Quasi-analog voltages:

wire [15:0] uin; // input
wire [15:0] ufb; // feed-back
wire [15:0] ubuf; // buffer of comparator output

wire q; // original comparator output, digital

// It just contains 3 sub-modules

komp cmp(q,uin,ufb,clock); // Comparator
output_buffer bf(ubuf, q); // Buffer generating analog output
rcint rci(ufb, ubuf, clock); // Feed-back RC integrator

endmodule

//..

// Clocked analog comparator with quasi-analog integer input

module komp(q,ux,uref, clock);
output q;
input [15:0] ux;
input [15:0] uref;
input clock;

reg q;

initial q=0;

always @(posedge clock);
 q = uref<ux;

endmodule

//..

// Output buffer, producing quasi-analog output voltage.
// Input: logic 0 and 1; Output: 16-bit quasi-analog integer
// values 16'h0000 and 16'hffff

module output_buffer(qa,din);

10.12.2002. PG. 18

input din; // digital input
output qa; // analog output

reg [15:0] qa;

always @din
 qa = din ? 16'hffff : 16'h0000 ;

endmodule

//..

// Integrating RC feedback circuit for sigma-delta A/D
// conversion, with quasi-analogous 16-bit integer variables.
// The voltage range 0...5V is mapped from 'h0000 to 'hffff
// Realizes the equation duout = (uin - uout)*dt/RC
// Signs are separated because regs store unsigned numbers

module rcint(uout, uin, clock);
output uout;
input [15:0] uin;
input clock;

parameter RC = 3000; // integrator time constant
 // for correct operation RC >= 10*clock-period

reg [15:0] uout;
reg [15:0] delu1;
reg [15:0] delu2;

time delt, tprev;

always
 begin
 @(posedge clock)
 delt = $time - tprev; // dt
 tprev = $time;
 if (uin<uout) // Increasing output
 begin
 delu1 = uout-uin;
 delu2 = delu1*delt/RC;
 uout = uout - delu2;
 end
 else // Decreasing output
 begin
 delu1 = uin-uout;
 delu2 = delu1*delt/RC;
 uout = uout + delu2;
 end
 end

initial
 begin
 uout = 0;
 tprev = 0;
 end

endmodule

//..

// WW bits wide counter with synchronous clear
// for counting the ones in the input stream

module counter(q,go,clear,clock);
output q;

10.12.2002. PG. 19

input go, clear,clock;

parameter WW=8;

reg [(WW-1):0] q;

initial q=0;

always
 begin
 @(posedge clock)
 if (go) q = q + 1'b1;
 if (clear) q = {WW{1'b0}};
 end

endmodule

// Timer: provides the time basis for the A/D conversion
// WW bits wide counter, carry=1 when the value is all-ones

module timer(q,cy,clock);
output q, cy;
input clock;

parameter WW=8;

reg [(WW-1):0] q;
reg cy;

initial
 begin
 q=0; cy=0;
 end

CNT5
Q[4:0]

GO CLR
CLK

TIMER CY
CLK

REG5
Q[4:0]

D[4:0]
LOAD

CLK

QQ[4:0]

R

C

RDY

UIN

UFB

CLOCK

Q[4:0]

SS

UBUF

Fig. 16. Sigma-Delta A/D-Converter

10.12.2002. PG. 20

always
 begin
 @(posedge clock)
 q = q + 1'b1;
 if (q == {WW{1'b1}})
 begin
 cy = 1'b1;
 @(posedge clock)
 q = {WW{1'b0}};
 cy = 1'b0;
 end
 end

endmodule
//..

// Small examples of different Verilog constructs

// 1. Continuous assignment and concatenation,
// applied in a four-bit adder with carry

wire carry_out, carry_in;
wire [3:0] sum_out, ina, inb;
assign
 {carry_out, sum_out} = ina + inb + carry_in;

//...
// 2. 4x16 --> 1x16 data-multiplexor module using the
// conditional operator

module select_bus(busout, bus0, bus1, bus2, bus3, enable, s);
 parameter n = 16;
 parameter Z = 16´bz;
 output [1:n] busout;
 input [1:n] bus0, bus1, bus2, bus3;
 input enable;
 input [1:2] s;
 tri [1:n] data;
 tri [1:n] busout = enable ? data : Z;
 assign
 data = (s==0) ? bus0 : Z,
 data = (s==1) ? bus1 : Z,
 data = (s==2) ? bus2 : Z,
 data = (s==3) ? bus3 : Z;
endmodule

//...
// 3. IF - ELSE statement

if (index > 0)
 begin
 if (rega > regb)
 result = rega;
 end // because of begin/end pair
else // else belongs to the first if
 result = regb;

//...
// 4. CASE statement used in a four-bit decimal decoder

reg [3:0] rega;
reg [0:9] result;

case (rega)

10.12.2002. PG. 21

 4´d0: result = 10´b0111111111;
 4´d1: result = 10´b1011111111;
 4´d2: result = 10´b1101111111;
 4´d3: result = 10´b1110111111;
 4´d4: result = 10´b1111011111;
 4´d5: result = 10´b1111101111;
 4´d6: result = 10´b1111110111;
 4´d7: result = 10´b1111111011;
 4´d8: result = 10´b1111111101;
 4´d9: result = 10´b1111111110;
 default result = ´bx;
endcase

//...
// 5. REPEAT -- applied in a simple multiplier

parameter size = 8, longsize = 16;
reg [size:1] opa, opb; // multiplicand, multiplier
reg [longsize:1] result;
begin : mult
 reg [longsize:1] shift_opa, shift_opb;
 shift_opa = opa;
 shift_opb = opb;
 result = 0;

repeat (size)
 begin
 if (shift_opb[1]) result = result + shift_opa;
 shift_opa = shift_opa << 1;
 shift_opb = shift_opb >> 1;
 end
end

//...
// 6. WHILE -- this block counts the logical ones
// contained in the bits of rega

begin : count1s // a name is given to the block
 reg [7:0] tempreg;
 count = 0;
 tempreg = rega;
 while (tempreg)
 begin
 if (tempreg[0]) count = count +1;
 tempreg = tempreg >> 1;
 end
end

//...
// 7. FOR -- the multiplier of the example REPEAT,
// using the construct ´for´

parameter size = 8, longsize = 16;
reg [size:1] opa, opb;
reg [longsize:1] result;
begin : mult
 integer bindex;
 result = 0;
 for (bindex = 1; bindex <= size; bindex = bindex + 1)
 if (opb[bindex])
 result = result + (opa << (bindex - 1));
end

10.12.2002. PG. 22

//...
// 8. Delay control

parameter d = 25, e = 120;
reg [0:7] rega, regb, regc;

#d rega = regb;
#((d+e)/2) rega = regb;
#regc rega = regb;

//...
// 9. Event control

@r rega = regb; // activated by any changes
 // of value in the register r

@(posedge clk) rega = regb; // controlled by the rising and
@(negedge clk) rega = regb; // falling edge of the clock

//...
// 10. Named event

event end_wave; // Event declaration

// activation in a block

parameter d 50;
reg [7:0] r;
begin // waveform controlled by
 #d r = 'h35; // sequential delay
 #d r = 'hE2;
 #d r = 'h00;
 #d r = 'hF7;
 #d -> end_wave; // generate the event
end

// using the event somewhere else in the program

@end_wave rega = regb;

//...
// 11. Level-sensitive event control (wait)

begin
 wait (enable) #10 a = b;
 #10 c=d;
end

// When the control comes to the block:
// - if enable=1 then after 10nsec a=b
// - if enable=0 then waits for enable=1
// and then after 10nsec a=b

//...
// 12. TASK -- Example: programmable monoflop

task mflop;
 output pulse;
 input clock;
 input [31:0] ticks; // pulse duration in clock ticks
 pulse = 'b1; // pulse starts

10.12.2002. PG. 23

 begin
 repeat (tics)
 @(posedge clock); // wait for rising edge of clock
 pulse = 'b0; // pulse finished
 end
endtask

// Activation somewhere else in the program

reg open;
reg [31:0] length;

mflop(open, length);

//...
// 13. FUNCTION -- Computing the factorial

function [31:0] factorial;
 input [3:0] n;
 reg [3:0] index;
 begin
 factorial = n ? 1 : 0;
 for(index = 2; index <= n; index = index + 1)
 factorial = factorial + 1;
 end
endfunction

// Activation somewhere else in the program

result = apha * factorial(dd);

	Preface
	UNIX Primer
	Verilog Primer
	Verilog Coding Examples

