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The objective of functional verification

▪ Verifying that the HDL model fulfills the requirements from functional
point-of-view.

• „HDL model”: Only the abstract model is checked, intended circuit structures
and synthesis issues are not investigated.

• „functional”: No physical characteristics are taken into account. E.g. 
verification of timing characteristics is not part of functional verification.
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The significance of functional verification

▪ The complexity of verification infrastructure increases more rapidly
than the complexity of the verified entity itself.

▪ In case of complex RTL IP cores

• 70% of the NRE goes into verification

• the number of verification engineers is double that of RTL designers

• only 20% of the code base is part of the synthesizable RTL model, 80% 
describes the verification infrastructure

▪ BUT! Verification engineers do not need to find the causes of bugs!

„Debugging is twice as hard as writing the code in the first place. Therefore, if

you write the code as cleverly as possible, you are, by definition, not smart

enough to debug it.”

Brian W. Kernighan, 1974
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The „who’s to blame” game

▪ Specification, RTL design and 
verification are done by
separate people / groups

▪ Possible causes of failing
verification process

• The RTL model is incorrect

• There is a flaw in the
verification infrastructure

• The specification is inaccurate, 
ambiguous

▪ The objective is to find
discrepancies → improve the
design
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FUNCTIONAL VERIFICATION AND ACCESSIBILITY
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Types of verification based on accessibility

▪ White-box verification

• the HDL model is known to the verification
engineer

▪ Grey-box verification

• only limited access to the HDL model

• debug/error-injection interfaces

▪ Black-box verification

• the HDL model is not known

• only the primary interfaces can be used to
interact with the module in
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▪ White-box

• It is easy to locate the problematic details. The critical states are known and 
they can be reached easily. The verification infrastructure is not reusable.

▪ Black-box

• The verification infrastructure (e.g. excitation patterns, reference models, 
etc.) are reusable. It is hard to induce critical circumstances within the
module. The observable error and the cause can be very far from each other
in space and time as well.

▪ Grey-box

• Some implementation details are known by the verification engineer

• Some internal signals (e.g. FSMs’ state registers) are accessible through the
user interfaces

• Technically, it is the mixture of the white-box and black-box, from advantages
and disadvantages point-of-view.

Types of verification based on accessibility
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Stimuli generation

▪ State space: All possible combinations of all possible values of the
storage elements and input vectors within the RTL HDL model. → 
astronomical number of states…

▪ Some of the states are erroneous; incorrect behavior can be observed

▪ Functional verification shall find the erroneous states

• Usually it cannot be proved that the model is correct (state space is too large)

• Verification must be continued, until the next revealed bug „doesn’t worth it”
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Stimuli generation

▪ Directed tests: Specific excitation patterns are manually generated, 
according to the requirements

• it can only find the bugs, which are specifically expected by the verification
engineer

▪ Random tests: Efficiency can be improved by generating many „similar” 
excitation patters with random data.

• Constrained random tests: Random testing efficiency decreases as the
number of states increases. Limiting the state space improves the efficiency
of random testing.
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Stimuli generation – example

▪ DUV: an RTL model dividing two unsigned numbers

▪ Stimuli generation practice

• Directed tests for initial functional checks: checking reset, host interface
hand-shake, enable signals, etc…

• Automated random tests for improving state coverage efficiently: generate
test cases using the host interface excitation pattern with many pairs of 
random operands

• Directed tests for covering corner cases: check the „exceptional” behavior by
formalizing a directed tests with the divisor set to zero.
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SELF-CHECKING TESTBENCHES
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Beyond the waveform – increasing the automation

▪ The excitation patterns are generated manually

▪ A model’s responses are checked in the waveform

▪ Problems

• As complexity increases, the waveform becomes unmanageable

• Waveform analysis is very time-consuming

• In case of RTL model changes, ALL responses shall be checked again!

▪ Solution: increase the automation!

• Self-checking testbenches

• Automated regression testing



Functional Verification Basics

14

Beyond the waveform – increasing the automation

▪ Self-checking testbenches & regression testing

• the testbenches include code snippets, which observe the DUV’s output(s) 
and check the behavior against the specification (the checks are high-level, 
formal models of the specification)

• if the RTL model is changed (e.g. bugfix), all tests shall be performed again 
(regression testing) to ascertain that previously checked features are intact

• with self-checking testbenches, regression testing can be done automatically
by scripts

-- check #2: After generating a request, the ready output
-- of the FSM shall become deasserted at the next rising
-- edge of the clock.
L_CHECK_2: process
begin

wait until rising_edge(request);
wait for clk_period + 1 ns;
if ( ready /= '0' ) then

report "-----------------------> check #2 FAIL";
wait;

end if;

report "-------------------------> check #2 PASS";
wait;

end process;
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End of topic

Key concepts

▪ The digital design flow relies on the correctness of the RTL 
HDL models – functional verification is an essential, but time-
consuming (expensive) process

▪ Three players; system engineer / architect, RTL designer, 
verification engineer – functional verification is about to
achieve consensus among them regarding the functionality to
minimize failure probability

▪ To increase verification productivity

▪ automated regression testing is unavoidable

▪ self-checking testbenches are needed
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Questions

▪ Who are the three stakeholders in the design flow? What is 
the purpose of the functional verification?

▪ What are the three types of verification from the accessibility 
perspective? What is the main difference between them?

▪ What methods are available to apply stimuli to a DUV (design 
under verification)?

▪ What tools and methods are available for the verification 
engineer, to check the behavior of the DUV, and if it works as 
expected? Is it possible to automate this process?
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QUALIFYING THE VERIFICATION PROCESS
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Qualifying the verification process

▪ Functional verification cannot prove if a design is “correct”

• What terminates the process?

▪ There are always some limiting factors

• Time

• Money

HDL-module chip system customer

time

Functional verification
Cost of 

correcting an 
error

number of detected 
errors
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Qualifying the verification process

▪ There is a need to ‘measure’ the verification progress

▪ Number of discovered errors per time period?
• Not an objective measurement

• But it make sense when other metrics are met

▪ Some objective metrics, e.g. code coverage?

• Code coverage percentage does not correlate well with discovered errors

• Errors still can be revealed after achieving 100% code coverage

• But low code coverage indicates that the test sequence should be extended

• Functional coverage

• Which features of the design is verified by simulation?

• Features are determined from the specification

• The coverage percentage can be collected automatically but the features are 
derived from the specification by an engineer (=human)
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Qualifying the verification process

▪ There is more than one type of code coverage

• Statement (assignment, instantiation)

• Branch (if … else …)

• Condition (which condition triggered the branch)

• if x=3 or y=3 then …

• Expression

• a <= (b or c) and (d or e);

• Finite State Machine (FSM)

• State coverage

• State transition coverage
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Qualifying the verification process

▪ Code coverage can be collected automatically during simulation

▪ Achieving 100% code coverage is almost impossible

• In some cases it may be unnecessary

• Statement cov.: e.g. generic parameters and their effect on the DUV/circuit

• State transition coverage: async reset from every other state

▪ Exclusion to code coverage may be added if it is justified

• Every exclusion needs to be explicitly justified!

▪ Spoiler: achieving ~100% code coverage does not mean that the RTL 
model is bug free
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Qualifying the verification process

▪ Functional coverage collected semi-automatically

• Which features are covered by simulation?

▪ What is a feature? -> determined by an engineer, from the specification

• e.g. the module shall have UART transceiver with specific baud rate, etc.

▪ Coverage can be assessed by implementing checks, that verifies some 
part of the feature

• A set of checks can verify a feature

▪ Simulator tool may help collecting the necessary information

• e.g. QuestaSim
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REUSABILITY IN VERIFICATION
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Reusability in verification

▪ How to lower the verification effort?

• Create and reuse reusable verification components ☺

▪ What makes a component reusable?

• The component models some standard behavior

• CRC/parity calculation

• UART frame generation

• External devices’ behavior model

• Basically a component can be reused if it implements some non design 
specific behavior and it has standard interfaces

▪ The bigger the reusable components, the better…

• Implementing a parity bit calculator is not a huge effort
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Reusability in verification

▪ Test sequence generating a single UART frame
(…)
rx <= '0'; wait for 8.67 us; -- start bit
rx <= '1'; wait for 8.67 us; -- bit 0
rx <= '0'; wait for 8.67 us; -- bit 1
rx <= '1'; wait for 8.67 us; -- bit 2
rx <= '1'; wait for 8.67 us; -- bit 3
rx <= '0'; wait for 8.67 us; -- bit 4
rx <= '1'; wait for 8.67 us; -- bit 5
rx <= '0'; wait for 8.67 us; -- bit 6
rx <= '0'; wait for 8.67 us; -- bit 7
rx <= '1'; wait for 8.67 us; -- parity bit
rx <= '1'; wait for 8.67 us; -- stop bit
(…)

▪ Hand-crafted frame

• Low reusability

• Replicating the test sequence -> Copy & Paste

• Error prune
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Reusability in verification

▪ Better approach is to implement “something”, that will generate the 
UART frame

• A simple “function call” should replace the hand-crafted mess

• VHDL: procedure, SystemVerilog: task

▪ ‘Bus’ functional model (BFM)

• Replicates the UART signal waveform
procedure uart_8o1_transmitter_bfm (

data: in std_logic_vector (7 downto 0);
signal tx: out std_logic

) is
variable P: std_logic := '0';

begin
tx <= '0'; -- start bit
for i in 0 to 7 loop -- data bits

tx <= data(i);
P := P xor data(i);
wait for 8.67 us;

end loop;
tx <= not P; -- odd parity bit
wait for 8.67 us;
tx <= '1'; -- stop bit
wait for 8.67 us;

end procedure;

▪ One of the simplest reusable 
component

▪ Not generic

• Other than 8 data bits?

• Even parity?

• Different baud rate?

▪ Could be improved
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Reusability in verification

▪ There are frameworks, which helps implementing reusable components
and reusable verification environments

• Universal/Unified Verification Methodology (UVM)

• SystemVerilog framework

• Universal VHDL Verification Methodology (UVVM)

• VHDL framework

▪ Raise the testbenches’ abstraction level

• Transaction level modeling (TLM)

• Test sequence and the DUV does not interact directly

• Test sequence contains a list of commands, and abstract verification 
components executes them

• (continued on next slide)
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Reusability in verification

▪ Raise the testbenches abstraction level

• Transaction level modeling (TLM)

• Test sequence and the DUV does not interact directly

• Test sequence contains/generates a list of commands, and abstract 
verification components executes them

• Predictor is a reference model which provides the expected responses to the 
scoreboard

• Scoreboard stores the stimuli and responses from the DUV and the predictor
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Systematic functional verification

▪ Using all the methods and tools mentioned earlier

• Systematic -> the verification process is documented and followed during the 
design cycle

▪ There is a plan on how the design will be 
verified – verification plan

• What tools and frameworks will be used for 
functional verification

• What verification components will be used

• How is the quality of the verification measured

• What is the stopping criteria of the verification 
process

• Additional information

• How the CDC issues will be investigated
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End of topic

Key concepts

▪ Complex verification environments

▪ Self checking testbenches

▪ Randomized stimuli

▪ Behavior models of the DUV’s environment

▪ Qualifying the verification process

▪ Code coverage

▪ Functional coverage

▪ Reusability

▪ Reducing the effort by re-using verification IPs
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Questions

▪ Describe the verification process! How the progress can be 
measured and what is the stopping criteria?

▪ Why is it impossible to prove a design “correctness” with 
functional verification?

▪ Why is the functional verification expensive? How can the 
verification effort be reduced?

▪ Describe an advanced verification environment!


