Optimum Design of a MEMS Switch

Michael P. Brenner*, Jeffrey H. Lang**, Jian Li*** Jin Qiu*** and Alexander H. Slocum™***

* Division of Engineering and Applied Sciences, Harvard University

Cambridge, MA 02138, brenner@deas.harvard.edu
Departments of Electrical** and Mechanical*** Engineering, Massachusetts Institute of Technology
Cambridge, MA 02139

ABSTRACT

We describe a novel methodology for predicting op-
timal designs for microelectromechanical devices. The
methods are applied towards the optimization of com-
ponent shapes of a bistable MEMS switch. Small mod-
ifications in component shapes lead to a substantial im-
provement in the device operation.
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1 INTRODUCTION

Optimizing device performance is a critical stage in
the design process. The usual approach to optimization
consists of several steps: first, a cost function quantify-
ing the device performance is formulated, and the con-
straints on the device are listed. Next, the device is char-
acterized by a set of parameters. A mathematical model
of the device gives the dependence of the cost function
on these parameters. The device optimization then con-
sists of finding the design parameters which optimize the
cost, subject to the imposed constraints. Typical im-
plementations of this algorithm are computer programs
which loop through all possible design parameters until
the best design is found.

This algorithm has two serious limitations: (1) First,
the numerical cost of applying the algorithm increases
exponentially with the number of design parameters.
Every new design parameter requires adding another
loop to find how the optimum changes. However, in
principle every device is described by a continuum of
possible design parameters: the shape of every compo-
nent is a continuous function. The optimal design could
have components whose shapes are outside any simple
parameterization scheme. (2) Second, a brute force pro-
cedure does not focus on the physical mechanism for
the property being optimized. For this reason, much of
the computational effort is directed towards parts of the
device that do not have much effect on the optimization.

In this paper we describe an approach for device op-
timization, which addresses these issues. The approach
is applied to an electrostatically actuated MEMS relay
switch. We demonstrate that the optimization predicts
shapes of the components of the relay switch which lead
to substantial design improvements. For example, an

appropriate choice for the shape of the switch leads to
an actuation force decreased by a factor of two.

The paper is organized as follows. Section 2 describes
the methodology we use for device optimization, in the
context of a device made out of cantilever beams. Then
we describe the application of these ideas to a MEMS
relay switch, with Section 3 describing the optimization
of the relay switch. A summary is given in Section 4.

2 OPTIMUM DESIGN ANALYSIS

We start by supposing that a general design concept
has been proposed, and describe a methodology for op-
timizing this design with respect to a class of design pa-
rameters. First it is necessary to invent a cost function
C that quantifies how well the design works. Then one
must be able to efficiently compute gradients of the cost
function with respect to the design parameters. A gra-
dient search then allows achieving the optimimum de-
sign. We describe this in the context of devices made out
of cantilever beams (appropriate for the application de-
scribed herein), though generalizations to other contexts
are straightforward. If I = bh®/12 is the moment of in-
ertia (where h is the beam thickness and b its breadth),
then the equation for the displacement w of the beam
from its unstressed configuration wy is

(BI(w —wo)")" + Tw" = f, (1)

where E is the Young’s modulus, T is the tension in
the beam and f is the external forcing. The boundary
conditions on the beam depend on how it is attached to
supports and on any forcing at the ends of the beam.
The tension in the beam is either determined by both
external compression or extension, and by any compres-
sion (extension) of the beam from its rest configuration.
The latter results in a tension T'= ESAL/L, where S is
the cross section of the beam, and AL/L is the relative
extension of the beam from its rest length L.

A typical cost function C' depends both on w and on
the free eigenvalues of the beam. (The free eigenvalues
T; and eigenfunctions w; solve (Elw})"” = —T;w!'). The
problems we consider here involve optimizing C' with
respect to changes in the shape of the beam (). We
will also consider important experimental constraints,
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such as requiring that the stress in the beam is smaller
than some yield stress.

Once the cost function C' constraints are defined, op-
timization proceeds by computing the gradient of C' with
respect to arbitrary changes in the design variable (1),
and then changing I to lower the cost, maintaining nec-
essary constraints. This proceeds iteratively until the
gradient vanishes. As usual in a simple gradient search,
the only guarantee of this procedure is that the pre-
dicted design is a local optimum of the cost function.

For a device with a large number of design param-
eters, the most expensive part of this algorithm is the
computation of the gradient of the cost function with
respect to the design parameters. Changing I — I + 41
causes the cost function to change C — C + 6C. A di-
rect calculation of 6C requires computing the change in
the cost for each changed design parmeters. Since eval-
uating the cost function once requires both solving the
above differential equation for w and finding its eigenval-
ues, this procedure is extremely expensive. A practical
implementation of a gradient search algorithm requires
efficient calculation of the gradient of Clw(T})].

2.1 Eigenvalue dependent cost function

Here, we describe how to efficiently calculate the gra-
dient of a cost function of the eigenvalues alone, C({T}}).
Since 6C = Z;’il g—%éi”i, we need a formula relating the
change in the eigenvalues caused by a change I — I+41.
This follows directly from equation (1): if I — I + 41,
then the it* eigenfunction (eigenvalue) changes from

w; = w; + 0w; and T; — T; + 67;. This implies

(BISw!)" + TPow) = —6Tyw} — (BSIwY)". (2)

For this equation to have a solution, the right hand side
of the equation is orthogonal to any null solution of the
left hand side. This solvability condition is

JoIwi? dz

i =B s

3)
This formula explicitly gives the change in the eigen-
values with respect to an arbitrary change in I. Thus
we have an explicit formula for the gradient of 6C with
respect to 61. The numerical cost of computing this gra-
dient is identical to that for computing the eigenvalues
and eigenfunctions. The amount of work is therefore
independent of the number of design parameters.

The existence of fast algorithms for computing gra-
dients of cost functions with respect to arbitrary design
parameters is an elementary consequence of the varia-
tional calculus and is routinely used in optimal control
theory [1]-[4]. Applications of such algorithms to design
of airplanes has been applied by Jameson [5]; applica-
tions to elementary problems in solid mechanics have

Figure 1: Schematic for the operation of the relay
switch. Cantilevered starting zippers (A) initiate the
zipping by closing the gap and then allowing the beam
to zip closed when the middle electrode is charged (B)
causing the switch to close. Turning on the top elec-
trode (C) causes the top starting zippers to engage and
the switch opens.

been given by [1], [3], generalizing the solution of Keller
for the shape of the strongest column of material of fixed
volume. We also note that this optimization procedures
differs both practically and conceptually from the so-
called topology optimization methods [6].

3 THE RELAY SWITCH

We will focus on our application of these ideas to
designing an electrostatically actuated bistable MEMS
relay switch, the idea for which is shown in Figure 1.
We will first describe the operation of the device and
derive the appropriate cost function to achieve the de-
sign objective. Then we will apply the above algorithm
to deduce an optimal design.

3.1 Overall Design

The figure shows the three stages in the operation
of the device: The switch is the lower beam, whose un-
stressed shape is curved. The vertical crossbars pro-
hibit the center of the beam from twisting. Qiu et.
al. [7] showed that this makes the switch bistable, with
two stable equilibrium states. The device can there-
fore be used as a mechanical switch. A metallic con-
tact is attached to the bottom of the switch, so that
when the beam is pushed from the unstressed equi-
librium (Fig 1A) to the second equilibrium (Fig 1B)
the switch can open or close (Fig 1C). The great ad-
vantage of this switch over other alternatives (latch-
lock mechanisms(8], [9] ; hinged multi-segment mech-
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Figure 2: Force displacement characteristics for the
switch. The ratio of the maximum force to the mini-
mum force is approximately 2.

anisms[10] ; residual-compressive-stress buckled-beam
mechanisms[11] ) is that it uses no latches, hinges or
residual stress to achieve its bistability.

The device uses an electromechanical zipper mech-
anism for actuation. The electrodes are coated with
a dielectric layer (oxide film). When the middle elec-
trode (Fig 1B) is charged relative to the top electrode,
the uppermost beam zips along the electrode, which in
turn pushes against the switch. If the electrical force
overcomes the mechanical resistance of the switch, the
switch closes. When the top electrode is charged (Fig
1C), the switch opens.

3.2 Optimizing the Switch

First we describe the optimization of the switch. The
switch is a beam obeying tequation (1), with length
L. Before actuation, the beam shape is wy = d(1 —
cos(2rz /L)), as assumed by Qiu et. al. ; a force applied
to the center causes the beam to flip to another stable
equilibrium position. The beam is clamped on both ends
and the tension T is determined by how much the beam
is stretched from its initial shape wg. Qiu et. al. chose
a uniform thickness beam; the force-displacement curve
for this design is plotted in Fig. 2.

The displacement is defined to be the distance the
center of the beam has moved from its initial (unstressed)
position. The force displacement curve has several dis-
tinguishing features: first, the switch is bistable, having
two equilibrium positions. Second, the force required
to push the switch between the two equilibria fpysp is
twice that required for the reverse transition fpp, yet it
is fpop that directly relates to the contact force.

We want to find the shape of the switch which op-
timizes this force-displacement curve. The efficiency of
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the device is determined by the force ratio R = fpush/ fpop-
A typical application requires that fp,p is above a thresh-
old (e.g., closing the relay switch requires fp,p > 50mN);
Simultaneously the force fpyusn should be minimized for
easy actuation. Thus, an optimal device minimizes R.
Moreover we have the constraints that (a) the structure
should be as small as possible; and (b) the yield stress
constraint for silicon cannot be violated.

To find the optimal structure it is first necessary
to understand which features of the beam shape deter-
mine the force displacement characteristics. It turns
out that these are almost completely determined by the
properties of the three equilibrium states. Besides the
unstressed stable equilibrium w = wyp, a straightfor-
ward calculation shows the other stable equilibrium has
w = —wp + O((h/d)?), and the tension in the beam is
T = /2Ty, where Ty is lowest eigenvalue of the beam.

The third equilibrium is the unstable transition state,
which controls the path for passing from equilibrium
(i) to (ii); in the transition state the solution is of the
form w = T'wg + Aws, where ws is the eigenmode of the
beam coresponding to T». It is straightforward to show
from equation (1) that T' = (1 — (T2/T5)?)7!, and 4 is
determined from the equation relating the tension in the
beam to how much it is stretched.

For a beam with uniform thickness, Tp = 27, Ty = 4«
so that I' = —1/3. Thus the displacement in the center
of the beam at the transition stateis Ay = 1-T' = —4/3,
as observed in Fig 2. Fig 2 also demonstrates that the
force is rougly linear through the transition state. This
can be calculated by applying a small force to the center
of the beam in the transition state. It can be shown that
the force displacement relation near the transition state
is given approximately by:

f=4T} (A = B), (4)

where T is the second free eigenvalue of the beam. A
is the location of the transition state. If we then as-
sume (as suggested by the simulation in Figure 2!) that
the linear regime around the transition state extrapo-
lates to both of the stable equilibrium states, equation
(4) then predicts that fpusn = 16/3(47)% =~ 842 and
frop = —8/3(4m)? ~ —421 in excellent agreement with
the simulation of Fig. 2. This then gives a simple for-
mula for the force ratio, valid for arbitrary beam shape:
R= fpush/fpop = At/(At - 2)-

We now can perform the optimization. The force
ratio tends to unity as T2/Tp — oo. In turn, the eigen-
values depend on the beam shape. We therefore seek a
beam shape I(z) which maximizes T5/Tp while main-
taining the strain constraint. The algorithm derived

1 A more complete analysis shows that this assumption is accu-
rate; when the beam thickness is not uniform the force displace-
ment curve is no longer perfectly linear, but the corrections to
linearity are small.
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Figure 3: Top: Evolution of the moment of inertia of
the beam during the optimization. The initial I(z) is
uniform (thick dashed line); with increasing T5/Tp the
beam becomes modulated. The thick solid line is the
final I(z). Bottom: Beam shape corresponding to the
optimal I(z). The beam thickness is exaggerated rela-
tive to its length by ~ 103.

above allows us to accomplish this, the results of which
are shown in Fig 3-4. Figure 3 shows the evolution of
I(z) during the optimization; the bottom part of the fig-
ure shows the optimal beam shape. A modest tapering
substantially changes the force ratio. The strain con-
straint is enforced by imposing a minimum beam thick-
ness.

The force displacement characteristics of this device
are shown in Fig 4. The force ratio is approximately
unity in the optimized structure. The bottom part of
Fig. 4 shows experimental data and finite element anal-
ysis for a fabricated structure on a silicon wafer, de-
signed to have R ~ 1.6. The structure has a force ratio
close to the design specifications.

4 SUMMARY

In this paper we have described a general approach
to the optimal design of microelectromechanical devices,
and the application of this approach to designing the
shape of a relay switch. The method starts with a math-
ematical analysis of the device, identifying the features
of the device which allow it to operate most efficiently; in
this case, the eigenvalue ratio controls the force ratio of
the switch. Then we applied a fast method for comput-
ing the gradient of the cost function suggested by this
analysis. Because the computational work in computing
this gradient is independent of the complexity of the de-
vice, we believe that this approach holds great potential
for device optimization. In a subsequent manuscript we

Figure 4: Top: Force displacement characteristics for
the optimized structure. The force ratio R ~ 1. Bottom:
Experiments and finite element analysis of a fabricated
double beam of length 9mm, minimum thickness 20um,
and d = 200um. The optimization analysis designed
this structure to have R =~ 1.6, as observed.

will describe the application of these ideas to optimizing
the actuator for this device.
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