
M. C. Wu 1 EE M250B

RF MEMS (1):
Introduction to RF Systems

Micromechanical Resonator Oscillators and
Micromechanical Filters for Wireless Applications
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• C.T.C. Nguyen, et al., IEEE Trans. MTT, 1999
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Introduction and Background
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Analog Digital
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Lower Power

Higher SNR

Multi-functional

High performance

Miniaturization
Smaller
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Technology Trends of Wireless
Telecommunication Systems
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Miniaturization of Transceivers

http://www.eecs.umich.edu/~ctnguyen/mtt99.pdf
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Ref: C. T.-C. Nguyen, "Micromechanical components for miniaturized low-power
communications," Proceedings, 1999 IEEE MTT-S International Microwave Symposium RF
MEMS Workshop June 18, 1999, pp. 48-77.

MEMS-Enabled Miniature Wireless Transceiver
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Bottlenecks in Current Microwave/MM-Wave
Systems – Band Selection Filters

• High-Q (Q ~ 1000’s) filters are needed in heterodyne
communication receivers for frequency selection in RF and IF
bands

• Current solution: Off-chip surface-acoustic wave (SAW) filter
– Bulky

IF filter
f0: 240MHz
∆f: 260kHz
Q: ~1000

IF filter
f0: 240MHz
∆f: 260kHz
Q: ~1000

3.8mm

3.8mm

RF filter
f0: 868MHz
∆f: 600kHz
Q: ~1500

RF filter
f0: 868MHz
∆f: 600kHz
Q: ~1500
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Bottlenecks in Current Microwave/MM-Wave
Telecommunication Systems – Passive Elements
• Lack of high-Q (~ 1000) passive elements like inductors and

capacitors in matching circuit or bias-Tee, etc.

Active Inductor
• Large Noise
• High Power

consumption

Active Inductor
• Large Noise
• High Power

consumption

MIM Capacitor
• Low Q (< 100)

MIM Capacitor
• Low Q (< 100)

Spiral Inductor
• Low Q (~ 10)
• Low resonant

frequency

Spiral Inductor
• Low Q (~ 10)
• Low resonant

frequency
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Integraable MEMS RF Components

MEMS RF Switch MEMS Inductor

MEMS Filter MEMS Tunable Capacitor
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Advantages and Challenges of RF MEMS

• Advantages:
– High-Q, Low Loss

• Filter, Inductor, Capacitor, Switch
– Tunability, Reconfigurability

• Inductor, Capacitor, Switch
– Low Power Consumption

• Electrostatic Actuation

• Challenges
– Actuation Speed

• T/R Switch
– Resonant Frequency

• RF Filter
– Reliability
– Packaging
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Micromechanical Resonator Oscillators
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High-Q Resonators

http://www.eecs.umich.edu/~ctnguyen/mtt99.pdf
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Attaining High Q
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Two-Port Micromechanical Resonator
Using Comb-Drive Actuator
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Lumped Element Model (Senturia’s Book)

1. Linearize 2-port capacitor
2. Impedance transformation

(See HW problem for details)

Lumped Elements in
Mechanical Domain

Lumped Elements in
Mechanical Domain

Equivalent Circuit
Elements in

Electrical Domain

Equivalent Circuit
Elements in

Electrical Domain

Impedance
Transformation
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Equivalent Circuit of 2-Port Resonator
(in Electrical Domain)

C. T.-C. Nguyen and R. T. Howe, “CMOS micromechanical resonator oscillator,”
Technical Digest, IEEE IEDM, Washington, D. C., December 5-8, 1993, pp. 199-202.
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Comb-Transduced Folded-Beam Microresonator
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Micromechanical Filters
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Quality Factor and Shape Factor

f
f

Q
∆

= 0 f0: resonant frequency
∆f: bandwidth
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High-Order Resonators
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Coupled Resonator System

Coupling removes the degeneracy of resonant frequencies of free-
running oscillators

Mode shapes of 3-resonator micromechanical filters
and their corresponding frequencies :
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High-Order Micromechanical Filters:
Lumped Mechanical Model and Its Equivalent LCR Circuit

Analogies
C - k
L - m
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Importance of High Q:
Low Loss Filters
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Three-Coupled-Resonator Filter
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Three-Resonator Spring-Coupled Filter

three-resonator two-resonator

~40dB
~20dB
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High-Order Microresonator Filter
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High Frequency Resonators
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Vertically Driven Micromechanical Resonator
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Electronic Tuning of Center Frequency
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Experimental Vertically Driven Resonator
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Coupled Vertically Driven Resonators
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Two Coupled Vertically Driven Resonator
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Scaling of Resonant Frequency and Q

kr: spring constant of resonator

mr: resonator mass

E: Young’s modulus

ρρρρ: density
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ks12: coupling beam spring constant

k12: normalized coupling coefficient

for a given filter type

(Chebyshev,…)
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Position of Coupling Spring

• Coupling spring and resonators are of similar size
Low Q

• Dynamic spring constant kr of a clamped-clamped beam is
larger at locations closer to the anchor points

Low velocity point
Q can be increased

• Coupling spring and resonators are of similar size
Low Q

• Dynamic spring constant kr of a clamped-clamped beam is
larger at locations closer to the anchor points

Low velocity point
Q can be increased

Q=341Q=341Q=24Q=24

Lr Lr/10
Lr/2
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VHF Free-Free Beam High-Q
Micromechanical Resonator

J. MEMS, Vol. 9, No. 3, 2000, C. T. –C. Nguyen, et al.(determined the gap)
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Comparison of Frequency Characteristics

Clamped-clamped beam
- Lr=16 µm, d=0.03 µm
- Vp=35 V, f0=54.2 MHz
- Q=840

Clamped-clamped beam
- Lr=16 µm, d=0.03 µm
- Vp=35 V, f0=54.2 MHz
- Q=840

Free-free beam
- Lr=17.8 µm, d=0.12 µm
- Vp=86 V, f0=50.35 MHz
- Q=8,430

Free-free beam
- Lr=17.8 µm, d=0.12 µm
- Vp=86 V, f0=50.35 MHz
- Q=8,430
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New Development in
GHz Micromechanical Resonators
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Scaling of Lateral Micromechanical Resonators

• Advantages of lateral resonator
– Wider variety of resonant modes
– Balanced resonators (push-pull)
– More design flexibility

• As frequency scales up
– Resonator size shrinks
– Capacitive transducer gaps must

also shrink (to sub-100 nm for
VHF)

– High aspect ratio structures
• Combine Poly-Si (high-Q structural

materials) with metal electrode (high
conductivity)
– Self-aligned process

Hsu, Clark, Nguyen, “A sub-micron capacitive
gap process for multiple-metal-electrode
lateral micromechanical resonators,” MEMS
2001, p. 349
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Radial Contour-Mode Disk µµµµ-mechanical Resonator

Hsu, Clark, Nguyen, “A sub-micron
capacitive gap process for multiple-
metal-electrode lateral
micromechanical resonators,” MEMS
2001, p. 349

• Radial contour mode allows
high resonant frequency
without requiring sub-micron
structures

• Place anchor at disk center –
nodal point of contour mode

Reduce mechanic loss and
increase Q
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Process Flow for Lateral Resonator
with Sub-Micron Gap

Hsu, Clark, Nguyen, “A sub-micron capacitive gap process for multiple-metal-electrode lateral
micromechanical resonators,” MEMS 2001, p. 349


