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L6:General Principles of Simulation

● Classical Mechanics and Potentials

● Atomistic Simulations: Molecular Dynamics

● Monte Carlo Simulations

● Kinetic Monte Carlo

● Quantum Mechanics and Many Body Problem

● Density Functional Theory

● Merging Experiment and Theory into Potentials

Classical Mechanics

● Potential Energy U({R
i
}) , i=1,2,...N is key

● Energy= ∑½ M V2 + U

● Force
i
= -

● Molecular Dynamics- discrete time steps

● Monte Carlo – random jumps in configuration 
space

● Kinetic Monte Carlo – rate driven jumps, 
Poisson processes

● Hybrid sequential/parallel mixtures-
MD/MC/KMC

∇ iU
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A typical simple interatomic potential has harmonic 
radial and angular bonds, dihedral angle interactions, 
van der Waals nonbonding interactions, and 
Coulomb terms; e.g.,
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Or perhaps you prefer Born/Mayer/Buckingham potential 
types-

U
ij
= A exp (-Br) – C/r6 + Q

i
Q
j
/r

and 'Many-Body' or 'Embedded Atom'  terms-

U
EA
(r
i
) = Function(ρ

i
)

and smooth rollover depending upon local atomic 
coordination-

e.g.,detect local neighborhood, bridge between sp2 and sp3

bonding schemes, surface vs bulk interaction parameters
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Molecular Dynamics

Courtesy A. Kumar:http://www.personal.psu.edu/auk183/MolDynamics/Molecular%20Dynamics%20Simulations.html

The Lennard-Jones (6-12) two parameter potential is truly minimal, but amazingly 
versatile. The scaled accelerations g

i
are rapidly calculated.
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Following initialization of positions and velocities, either Verlet or LeapFrog are 
popular fast time-step algorithms. With no fancy tricks, time step of ~ 1 fsec is 
needed for accurate trajectories- since period of typical molecular vibration is ~ 
1psec. 

Velocity Scaling or the Langevin thermostat are two frequently used 
schemes for reaching equilbrium, and setting a desired temperature.
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Two body correlation functions g(r), FT of density ρ(k), and the scattering 
Structure Factor S(k) are  immediately useful outputs
Courtesy Furio Ercolessi:  http://www.fisica.uniud.it/~ercolessi/ 

Stillinger-Weber potential is nice for tetrahedral semiconductors, but number of 
parameters is growing.

F. Stillinger and T. A. Weber, Phys. Rev. B 31, 5262 (1985).

Tersoff potential has variable-strength pair-wise interactions :
B
ij
(G

ij
) – while flexible, has a frightening number of parameters. Think of sp2 vs sp3 

bonding in hydrocarbons. 
J. Tersoff, Phys. Rev. B 37, 6991 (1988); D. W. Brenner, Phys. Rev. B 42, 9458 (1990).
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Monte Carlo Simulations

Do you feel lucky?

By making random jumps (actually biased random sampling) 
in configuration space, we can survey widely separated 
regions of configuration space. The configuration average of 
a quantity <A> is one of the basic outcomes.

Thermal Average => Random Sum => Importance-Sampled Sum
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The Metropolis algorithm is as follows:
The first conformation is randomly generated. At each point in the 
construction of the chain of conformations a move is attempted to the current 
conformation. The move is rejected immediately if the local chain 
conformation is not compatible with the attempted move or if it violates the 
excluded volume condition. If these two conditions are satisfied then the so 
called Metropolis criterion is applied. If the difference between the energy of 
the resulting conformation and the energy of the current conformation, ∆E , is 
negative (i.e. the energy of the resulting conformation is smaller than the 
energy of the current conformation), then the resulting conformation is 
accepted and it becomes the new conformation in the chain. If ∆E is positive, 
however, a (pseudo)random number between 0 and 1, 0<R<1, is generated 
and the resulting conformation is only accepted if exp(- ∆E/kT) > $.  If      
exp(- ∆E/kT) < R then the resulting conformation is refused. Whenever the 
conformation resulting from the attempted move is refused for any of the 
three possible reasons, then the new conformation of the chain is the same 
current conformation. For sequence selection the same algorithm is used but 
the ``moves'' correspond to switching the position of two monomers while the 
conformation is kept fixed 
The probability of accepting a trial move is given by:

Metropolis, N., Rosembluth, A., Rosembluth, M. & Teller, A. ,J. Chem. Phys. 21, 1087-1092, (1953)

“Measurements”
Generate configurations of, say, the Ising model using a Monte Carlo algorithm, such as 
Metropolis. Then what do we do with them? Numerically measure quantities of interest, such 
as:

Quantities such as these are measured for each configuration, and the averages and 
statistical errors calculated.

Courtesy Paul Coddington, Northeast Parallel Architectures Center
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Another powerful use of MC: Searching for equilibrium structures: Local 
Energy-Minimum Basins

Snapshot of the crystal/melt interface from a Monte Carlo simulation of isotactic polypropylene 
(i-PP). At the top and bottom are helical i-PP chains in crystalline order in the lamella. In 
between is the interphase comprised of tails(red), loops(green) and bridges(blue). 

P. J. in 't Veld, M. Hütter, and G. C. Rutledge,Macromolecules; 2006; 39(1) pp 439 - 447

The crystal growth and shape change due to heating is a kinetic process, out 
of equilibrium. To simulate this, we need a method with a firm 
correspondence to real time.

KMC describes a Poisson process, a succession of independent micro-
events. Every event has a rate which is dynamically changed during 
simulation, depending on both the local environment and global conditions.

Rates describe rare atomic events, like diffusions or depositions, tied with 
overcoming free-energy barriers.

Kinetic Monte Carlo:

A Means to Structure Growth and Multi-Time-Scale Processes

• make a list of all possible events/rates – ri, with  R = Σi ri
• choose an event with probability ri/R, and execute it
• advance the time by ∆t = - lnξ/R,  using random ξ∈(0,1) 
• update events/rates list – each execution creates a new 
situation!
• repeat procedure

Algorithm:
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Lattice-based events: 

• physisorption – deposit to a site;
• diffusion – hop to a neighbor site;
• chemisorption – anchor to a site;
• cross-link  two Si neighbors

Stages: solution transport, hydrolysis, adsorption, diffusion, 
cross-linking.

The process is kinetic, with time scales far beyond MD reach 
– KMC is a method of choice. 

Lattice KMC Approach is Simple

Problems: oversimplified bonding topology; further improvements impractical; the 
finer kinetic details of hydrogen bonding evolution not included.

Simulating vapor deposition  of pillars deposited through a mask,
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( )12,12,1 ���� nkdr depdep

Deposition rates strongly depend on the semi-transparent “mask” which covers chosen areas 
of the surface. Deposition can also depend on neighboring, regulated by parameter kdep:

KMC events: depositionKMC events: deposition

Crystal particles diffuse, smearing out the grown structure. We model this by hopping 
deposited units to neighboring cells, biased by neighboring and regulated by kdiff.

[ ]epsnnkdiffr diffdiff
����� 1)12(

Our crystals have a tendency to grow 

spikes or pillars when heated, through 
diffusion alone.

We introduce a phenomenological 
parameter eps to provide the free-
energy bias for hopping upward:

KMC events: diffusionKMC events: diffusion
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After each event, the environment around every site must be After each event, the environment around every site must be 
evaluated, and rates recalculated. Cutting the cost of this evaluated, and rates recalculated. Cutting the cost of this 
process is critical to obtaining reasonable sampling ratesprocess is critical to obtaining reasonable sampling rates

Finding the rates after a 
diffusion:

• tabulated at outset:

all cells inside for all 
eight possible 
directions of 
diffusion

all border cells 
(blue) and their 
inside neighbors

Target systems
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Target systems include such 'classics' as FeTarget systems include such 'classics' as Fe
xxAg, Ag, 

anion diffusion in solidanion diffusion in solid--oxide fuel cells, and oxide fuel cells, and 
textured/functionalized wet bioactive surfaces.textured/functionalized wet bioactive surfaces.

e.g.,we model selected crystal surfaces of HAP where atoms are deposited by 
a patterned laser beam and then heated to diffuse and aggregate into 

mesoscopic pillars (5-20 micron diameter).

The whole process must be 

modeled in stages, each one 

with a specific approach -

from a coarse KMC, a finer 

Molecular Dynamics, to a 

Quantum Mechanical one.

Water, and ions like Zn are then inserted to 

chemically modify the surface, molecules such as 
peptides bind to this surface,  providing an attractive 

environment for osteoblasts (bone-builders) to attach 

and function.

Quantum Mechanics

● Full-scale Many-body treatment – Configuration 
Interaction (CI) expansion- O(N!) limits to small 
systems

● Limited Multideterminant Expansion- MC-SCF –

● MBPT: Certain types of correlations summed- MP2, 
MP3, CCSD, CCSDT,... O(Np) p=6,7 ?

● Optimized Single Determinant- HF, UHF- O(N3)

● Density Functional Theory (DFT)- from LDA to LSDA, 
PBE, GGA, MGGA, and on and on...O(N or N2 or N3, 
depending on cleverness)

● Semiempirical QM: PPP, Hückel, Tight-Binding, and 
on and on...- Fast, parameterized, limited predictions
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The time-dependent Schrödinger equation  is 
really simple..

If H is a time-independent operator, then

The Many-electron Many-nucleus 
Hamiltonian also is not very complicated, 
when only electrostatics are included:

The Stationary States, which conserve energy E, satisfy

So What Is the Difficulty?
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How to go from 4N variables to 
4?

Some form of mean-field theory is the answer-

H ~ ∑
i
h
i
+ higher-order-correlations

(Hartree-Fock, Dirac-Slater-Gaspar, Kohn-Sham...)

Then try to solve (h
i
– ε

i
)Ψ

i
= 0,  i=1,2,...N

and assemble density ρ(r), two-point density matrix 
ρ(r, r') iteratively- Self-Consistent-Field 

Density Functional Theory

● The immense amount of information in a many body 
wavefunction is too great for useful interpretation: density 
matrices allow us to condense that info to one-, two-, three-... 
body quantities which can be related to experiment 

● The one-matrix contains all info about one-electron properties: 

ρ(1|1')= ∫Ψ
N
*(1',2',...N')  Ψ

N
(1,2,...N)dx

2
dx

3
...dx

N

● So, look for methods which will directly obtain the density 
matrices. It's not as easy as it seems – alas, for N-
representability.
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The ground state energy E is a functional of the density n.

Introducing an auxiliary set of 'one-electron wavefunctions'  and occupation 
numbers to define n:

Kohn & Sham then derived an Effective Schrödinger equation:

Which is determined from any external potential V, the local e-e 
Coulomb repulsion, and “all the rest” in the form of V

XC

Naturally, all the approximations, unknowns, and really 
hard work is pushed onto V

XC
!!!  In the simplest free-

electron approximation, 

V
XC
~ V

X
= A n1/3 , as noticed by Slater and Dirac in the 

1930's. The multitude of exchange and correlation 
functionals now in existence mark the steady (?) 
progress toward more accurate treatment of e-e 
interactions. Some work better for specific systems than 
others. One of the schemes popular with chemists, 
B3LYP (Becke-3, Lee, Yang, and Parr) is a wild brew of 
parameters and a mixture of HF exchange – a so-called 
'hybrid functional'. So we can seek simplicity, rigor, or 
accuracy in the model, but can't have all at the same 
time.
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Pure FEM 
Region

Common Boundary
Region

Detailed Calculation

Overlap/Buffer Zone

Mean Field Zone
ctive MD
Region

Focus Area #k- A 
general approach to 
Order(N) methods

How Do We Break Down a Huge 
System into Manageable Parts?

Parameters of the interatomic potential U are obtained-

(1) By Fitting to experimental data – lattice constants, 
atomic positions, elastic coefficients, dielectric 
matrix,...{Fi}
(2) By Fitting to a ‘Training Set’ of data for different 
atomic configurations- semiempirical or ab initio quantum 
mechanics,...{Gi}
(3) By Interpolating/Extrapolating on similar known 
structures.

Then Minimize the Cost Function:
W = ∑exptl pi (Fi – fi)

2 + ∑qm qi (Gi – gi)
2

Merging Experimental and Theoretical 
Data into Potentials
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What are the uses for the optimized potential?

● Compact representation of data gathered from 
disparate sources, can be enriched as data accumulate

●Critical input to MD, MC, and KMC simulations to 
generate further predictions

●Semi-empirical fixups  as Vext for 'first-principles' QM 
methods which don't work perfectly – e.g., van der 
Waals interactions in DFT


