

Inverter	Top-down	Bottom-up (Si nanowire)	Bottom-up (CNT)
Area	10R x 6R	3R x 3R	5R x 1R
Limited by	Wavelength	Assembly process	
Mask steps	6 mask process	1 mask process	2 mask process
Pros	Well established Simple structures and fabrication		
Cons	Complicated fabrication Low yield for assembly processes		
Future	Resolution can be 30 nm. ? (may be dominant under 10nm)		
ruluie	Nenewire		

•SEM image	oor deposition)
•SEM image	d PDMS stamp with combys reading b Catalysi transfer PDMS analysi transfer PDMS analysi transfer PDMS analysi transfer Catalysi transfer C
Cassell AM, et al. JACS 1999	cedure for CVD growth

Experimental procedure	
1) CNT	Case A
Growth	
Dispersion in surfactant by soni	cation and a second
2) Au lines	
Si wafer	1211110 (1211) (1211) (1211) (1211)
Oxidation	Statement Colored Statements
Au patterning	
Alkanethiol growth (SAM) in solu with evaporation	ution or
3) CNT assembly by self-assemb	oly and a second se
Single drop of CNT suspension	
Dry	Fig. 2, Electron micrographe of the nanotative attainguistics on octainant
4) Imaging	these encoding of dependent surfaces a network holding over their electronics com and a later dependent on key of year electronic lane (holding)
	Burghard M, et al. Advanced Materials. 1998.
PUNIVERSITY OF	· · · · · · · · · · · · · · · · · · ·

Comparison for assembly methods					
	Growth	Chemical patterning	E-field		
Purity demand	High	High	Low		
Patterning	Catalyst	Deposition area	Electrodes		
Temp./ time	>500∘C/ ~hrs.	room temp./ 1min	room temp./ 1min		
Sorting	Yes	No	Yes (electrical property & physical size)		
Potential for Waferscale fab.	Yes	Yes	Yes		
WASHINGTON			NanoManufacturing Lab.		

References

•Burghard M, Duesberg G, Philipp G, et al., Controlled adsorption of carbon nanotubes on chemically modified electrode arrays, ADVANCED MATERIALS 10 (8): 584+ JUN 2 1998 •Cassell AM, Franklin NR, Tombler TW, et al. Directed growth of free-standingsingle-walled carbon nanotubes, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 121 (34): 7975-7976 SEP 1 1999 •Cui Y, Lieber CM, Functional nanoscale electronic devices assembled using silicon nanowire building blocks SCIENCE 291 (5505): 851-853 FEB 2 2001. •Derycke V, Martel R, Appenzeller J, et al.Carbon nanotube inter- and intramolecular logic gates NANO LETTERS 1 (9): 453-456 SEP 2001 •He RR, Gao D, Fan R, et al., Si nanowire bridges in microtrenches: Integration of growth into device fabrication, ADVANCED MATERIALS 17 (17): 2098+ SEP 5 2005 •Huang Y, Duan XF, Wei QQ, et al., Directed assembly of one-dimensional nanostructures into functional networks, SCIENCE 291 (5504): 630-633 JAN 26 2001 •Park S, Lim JH, Chung SW, et al., Self-assembly of mesoscopic metal-polymer amphiphiles, SCIENCE 303 (5656): 348-351 JAN 16 2004 Rao SG, Huang L, Setyawan W, et al., Large-scale assembly of carbon nanotubes, NATURE 425 (6953): 36-37 SEP 4 2003 •Wei BQ, Vajtai R, Jung Y, et al. Organized assembly of carbon nanotubes - Cunning refinements help to customize the architecture of nanotube structures, NATURE 416 (6880): 495-496 APR 4 2002

WASHINGTON

NanoManufacturing Lab.