

Yield of na Average number o	nowii	re de d nanowir	positio	on f	Į į	Flow
	Gap areas			Side areas		
Gap Size	5µm	15µm	50µm	5µm	15µm	50µm
Open deposition	6.0±5.3	0.7±0.3	3.3±3.1	13.3±1.5	3.0±3.5 1	2.7±6.0
Channel deposition	16.7±5.3	12.0±5.3	12.7±5.3	7.0±3.6	6.0±3.0	7.7±2.1
Regarding the channary area and smaller in the uniform flow in the the number of nance. Random flow in the side areas.	nel deposit the side ar channel tra wires in th open dep	ion, the n eas comp ansports r e gap are osition inc	umber of na pared to the manowires to a creases the n	nowires is open depo the gap, number of	<u>larger in</u> <u>ssition.</u> which incr nanowire	<u>the gap</u> reases s in the
WASHINGTON					Nano Man	ufacturing Lab

F	uture direction
•	Fluid flow assisted dielectrophoretic assembly can be used for massive assembly of nanowires (nanotubes).
•	The fluid flow induced mechanism needs to be further investigated for smaller scale objects (e.g. single walled carbon nanotubes).
•	The sorting principle should work for other bio/nano particles.
•	The applications include particle separator, DNA chips, other molecular devices.
W	ASHINGTON Nano Manufacturing L

Introduction	
 The need for multifunctional materials is driven by recent trends in engine industries. 	ering
 A number of investigations have been successful to achieve the multifunctionality of nanocomposites 	
- A. Y. Cao et al, Nature Materials, 2005.	
– H. Choi et al, Advanced Functional Materials, 2006.	
 The nanomaterials could demonstrate the superb properties due to the extremely large interface in different domains. 	
 As a preliminary study, hybrid fiber (Single walled carbon nanotubes + Sic nanowires) formation is demonstrated by using AC electric field and capill action. 	C ary
WASHINGTON Nano Manufacturin	g Lab.

WASHINGTON

Nano Manufacturing Lab.

