

)	V	/irus D	Detection		
Virus detect •Transpornanofluidi •Selective according properties	tation of v tation of v ic channel deposition to sizes &	irus by n of virus electrical	(a) Herpes simplex virus (HSV)	(c) Bacteriophage P22	(c) Inovirus
	Physical prope	erties of the viru	(b) inde		<u>~</u> 0°
	Physical properties of the state of the stat	erties of the viru Tail size, nm	(0) million		
Herpes simplex virus	Physical propo	erties of the viru Tail size, nm	(0) milled JS05 Z50 (membrane included)		40
Herpes simplex virus Influenza virus	Physical properties of the state of the stat	Tail size, nm	JSes Total length, nm 250 (membrane included) 100		40
Herpes simplex virus Influenza virus Bacteriophage P22	Physical propo	Tail size, nm	Total length, nm 250 (membrane included) 100 80		
Herpes simplex virus Influenza virus Bacteriophage P22 Bacteriophage UrLambda	Physical properties of the second sec	Tail size, nm 20 150	(0) miller ISES 250 (membrane included) 100 80 200	Illustration of using frequency-de	pendent DEP force to sor

	References
•	M. Trau, D. A. Saville, and I. A. Aksay. Assembly of colloidal crystals at electrode interfaces. Langmuir, 13(24):6375–6381, 1997.
•	V. Brisson and R. D. Tilton. Self-assembly and two-dimensional patterning of cell arrays by electrophoretic deposition. Biotechnology and Bioengineering, 77(3):290–295, 2002.
•	U. Zimmermann, U. Friedrich, H. Mussauer, P. Gessner, K. Hamel, and V. Sukhoruhov. Electromanipulation of mammalian cells: Fundamentals and application. IEEE Transactions on Plasma Science, 28(1):72-82, 2000.
•	Y. Huang, e. a. Directed assembly of one dimensional nanostructures into functional networks. Science 291, 630 (2001).
•	Thomas Rueckes, et al., "Carbon Nanotube Based Nonvolatile Random Access Memory for Molecular Computing", SCIENCE, VOL 289, 7 JULY 2000.
•	K. A. Riske and R. Dimova. Electro-deformation and poration of giant vesicles viewed with high temporal resolution. Biophysical Journal, 88(2):1143–1155, 2005.
•	J. H. Chung, K. H. Lee, J. H. Lee, and R. S. Ruoff, "Toward large-scale integration of carbon nanotubes," <i>Langmuir</i> , vol. 20, pp. 3011-3017, Apr 2004.
•	J. Tang, G. Yang, Q. Zhang, A. Parhat, B. Maynor, J. Liu, L. C. Qin, and O. Zhou, "Rapid and reproducible fabrication of carbon nanotube AFM probes by dielectrophoresis," <i>Nano Letters</i> , vol. 5, pp. 11-14, Jan 2005.
•	R. Annamalai, J. D. West, A. Luscher, and V. V. Subramaniam, "Electrophoretic drawing of continuous fibers of single-walled carbon nanotubes," <i>Journal of Applied Physics</i> , vol. 98, Dec 2005.
•	W. K. Liu, D. W. Kim, and S. Q. Tang, "Mathematical foundations of the immersed finite element method," <i>Computational Mechanics</i> , vol. 39, pp. 211-222, Feb 2007.
•	Y. L. Liu, "Integrated Simulation Tools for Fluid-Structure Interactions in Bio-Nano Systems," in <i>Mechanical Engineering</i> . vol. Ph.D. Evanston: Northwestern University, 2006.
•	Y. L. Liu, J. H. Chung, W. K. Liu, and R. S. Ruoff, "Dielectrophoretic assembly of nanowires," <i>Journal of Physical Chemistry B</i> , vol. 110, pp. 14098-14106, Jul 2006.
•	Y. L. Liu, W. K. Liu, T. Belytschko, N. A. Patankar, A. C. To, A. Kopacz, and J. H. Chung, "Immersed Electrokinetic Finite Element Method," <i>International Journal for Numerical Methods in Engineering</i> , vol. In press, 2007.