

		Process	Wave length	Resolution	Throughput
UV		Parallel	~ 400 nm	2 µm	Excellent
Deep UV		Parallel	248 nm	0.5 µm	Excellent
Extreme UV 🔨		Parallel	13.4 nm	50 nm (30nm)	Excellent
E-beam lithography		Serial	< 1 nm	10 nm	Fair
SPM	STM	Serial	N/A	0.1 nm	Fair
	Dip-pen	Serial	N/A	50~100 nm	Fair
Soft litho X-ray	µ-contact printing	Parallel	N/A	300 nm	Very good
	NIL 🔨	Parallel	N/A	100(10 nm)	Very good
		Parallel	< 1 nm	100 (20 nm)	Very good
	?	High resolution, high throughput lithography is required.			

Summary of Shadow width								
The shadow width of the pre-patterned edges with different shapes on a deposition plane								
Evaporation	Shapes of shadow edge (with a uniform height <i>h</i>)							
sources (with a radius <i>R</i> and a deposition height <i>H</i>)	Arbitrary shape: $\rho = f(\theta)$	Straight line: $\rho = \frac{\rho_0}{\cos \theta}$	Center circle: $\rho = \rho_0$					
Spherical source	$w = \frac{h}{H \cdot f(\theta) + R\sqrt{H^2 - R^2 + f^2(\theta)}} \frac{f^2(\theta) - R^2}{\sqrt{1 + \left[f'(\theta) / f(\theta)\right]^2}}$	$w = \frac{\rho_0^2 - R^2 \cos^2 \theta}{H \cdot \rho_0 + R \sqrt{(H^2 - R^2) \cos^2 \theta + \rho_0^2}} h$	$w = \frac{\rho_0^2 - R^2}{H \cdot \rho_0 + R\sqrt{H^2 - R^2 + \rho_0^2}} h$					
Circular source (<i>tilted case</i>)	$w = \frac{h}{H + R\cos\varphi} \frac{f(\theta) - R\sin\varphi}{\sqrt{1 + [f'(\theta)/f(\theta)]^2}}$ (where $\tan\varphi = \cot\gamma/\cos\theta$)	$w = \frac{\rho_0 - R\sin\phi\cos\theta}{H + R\cos\phi}h$	$w = \frac{\rho_0 - R\sin\varphi}{H + R\cos\varphi}h$					
Circular source (parallel case)	$w = \frac{h}{H} \frac{f(\theta) - R}{\sqrt{1 + [f'(\theta) / f(\theta)]^2}}$	$w = \frac{\rho_0 - R\cos\theta}{H}h$	$w = \frac{\rho_0 - R}{H}h$					
Point source (R = 0)	$w = \frac{h}{H} \frac{f(\theta)}{\sqrt{1 + \left[f'(\theta) / f(\theta)\right]^2}}$	$w = \frac{\rho_0}{H}h$	$w = \frac{\rho_0}{H}h$					
WASHINGTON <12> Nano Manufacturing Lab.								

Reference

• Chiba, A., Ota, K., Ogawa, T., and Okazaki, S., Estimation of Extreme Ultraviolet Power and Throughput for Extreme Ultraviolet Lithography, *Jpn. J. Appl. Phys.* 40, 4535-4539, 2001.

•Chung, J. H., Lee, K.-H., and Lee, J., Nanoscale Gap Fabrication by Carbon Nanotube Extracted Lithography (CEL), *NANO LETTERS* 3 (8), 1029-1031, 2003.

•Kosiorek, A., Kandulski, W., Chudzinski, P., Kempa, K., and Giersig, M., Shadow nanosphere lithography: Simulation and experiment, *Nano Letters* 4 (7), 1359-1363, 2004.

• Marrian, C. R. K. and Tennant, D. M., Nanofabrication, *JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A* 21 (5), S207-S215, 2003.

•Sun, L. F., Chin, S. N., Marx, E., Curtis, K. S., Greenham, N. C., and Ford, C. J. B., Shadow-evaporated nanometresized gaps and their use in electrical studies of nanocrystals, *Nanotechnology* 16 (6), 631-634, 2005.

•Zhou, Y. X. and Johnson, A. T., Simple fabrication of molecular circuits by shadow mask evaporation, *Nano Letters* 3 (10), 1371-1374, 2003.

WASHINGTON

<29>

Nano Manufacturing Lab.