

Types of Fuel Cells Polymer electrolyte membrane fuel cell (PEMFC) - hydrogen or methanol - proton conducting polymer membrane electrolyte, platinum coated porous carbon electrode, 80-110°C - high power density, low operating temperature - expensive components, contamination - automotive Solid oxide fuel cell (SOFC) - hydrogen - solid metal oxide electrolyte, porous conducting cermet/oxide electrode, 600-1000°C - waste heat, high power density - high temperature issues, expensive, sealing - stationary power generator Carrette et al, Chemphyschem, 2000 http://www.nfcrc.uci.edu/fcresources/FCexplained/index.htm O'Hayre R, Cha SW, Colella W, Prinz FB, Fuel Cell Fundamentals, John Wiley & Sons, New York, 2006

	Types of Fuel Cells
•	Phosphoric acid fuel cell
	– hydrogen
	 liquid H₃PO₄ electrolyte, platinum coated graphite electrode, 160-200°C
	 mature technology, low cost
	 susceptible to catalyst contamination, electrolyte evaporation
	 commercial power generator for building
•	Alkaline fuel cell
	– hydrogen
	 aqueous KOH electrolyte, platinum coated porous carbon or nickel electrode, 60-90°C
	 low cost
	 pure H₂ and O₂, remove water, resupply electrolyte
	- aerospace
•	Molten carbonate fuel cell
	 hydrogen, methane, alcohol
	 molten alkali carbonate electrolyte, porous nickel electrode, 600-800°C
	 fuel flexibility, high quality waste heat
	 CO₂ recycling, degradation, expensive materials

SOFC Components					
 Common requirements: chemical and material stability at high temperatures, no reaction with other components, minimum thermal expansion mismatch 					
 Electrolyte (Electrolyte is an electron-insulator and ion-conductor) Role: path for oxygen ions from cathode to anode Requirements: high conductivity for ions, low conductivity for electrons, gastightness Materials: yttria stabilized zirconia, gadolinia doped ceria Anode 					
 Role: reaction site for oxidation reaction to yield electrons (electricity) Requirements : porosity(30-40%) for fuel flow, high conductivity for electrons Materials: nickel-yttria stabilized zirconia composite, nickel-ceria composite Cathode 					
 Role: reaction site for reduction reaction to yield ions Requirements: porosity(30-40%) for air flow, high conductivity for electrons Material: strontium-doped lanthanum manganite 					
 Interconnect Role: providing electrical contact between cells, distributing fuel to anode and air to cathode Requirements: electron conductivity, impermeability Material: lanthanum chromite 					
Badwal, Ceramic International, 1996 Omerod, Chemical Soceity Reviews, 2002					

Variables and Parameters						
-	Symbol	Name	Method to obtain parameter			
_	σ	stress				
$ abla \cdot \mathbf{\sigma} + \mathbf{b} = \rho \dot{\mathbf{v}}$	b	body force per unit volume				
	ρ	density				
2T	v	velocity				
$\rho C \frac{\partial I}{\partial m} = \nabla \cdot (\kappa \nabla T)$	C_p	specific heat				
$p = p \partial t$ (111)	Т	temperature				
	t	time				
$\frac{\partial c_i}{\partial c_i} = \nabla \cdot D \left(\nabla c_i + \frac{q_i e c_i}{2} \nabla \Phi \right)$	к	thermal conductivity	transport theory; MD			
$\partial t = V D \left(V C_i + kT V \Phi \right)$	S	heat generation rate				
	Φ	electric potential				
$\nabla \cdot (c\nabla \Phi) = -\nabla a a c$	е	charge of an electron				
$(\mathcal{E} \vee \Psi) = \sum_{i} q_i \mathcal{E} c_i$	c_i	concentration of species i				
i	q	charge number				
	ε	permittivity				
$\frac{\partial \eta_i}{\partial t} = -L \frac{\delta F}{\delta m}$	D	diffusivity	first principles calculation + transport theory			
$\partial i = \partial \eta_i$	η_i	field parameter for grain orientation				
$\partial \rho = \left(\left(- \delta F - \tau \right) \right)$	L	kinetic coefficient	experiment			
$\frac{f}{\partial t} = \nabla \cdot M \nabla \frac{f}{\partial t} - \theta \nabla \Phi $	М	kinetic coefficient	experiment			
	Θ	effective charge				
_	F	Free energy				

References					
 Review on fuel cells Carrette L, Friedrich KA, Stimming U, Chemphyschem 1, 162 (2000) Minh NQ, J Am Ceram Soc 76, 563 (1993) Badwal SPS, Foger K, Ceramics International 22, 257 (1996) Brandon NP, Skinner S, Steele BCH, Annu Rev Mater Res 33, 183 (2003) Ormerod RM, Chem Soc Rev 32, 17 (2003) Ralph JM, Schoeler AC, Krumpelt M, J Mater Sci 36, 1161 (2001) O'Hayre R, Cha SW, Colella W, Prinz FB, Fuel Cell Fundamentals, John Wiley & Sons, New York, 2006 					
SOFC electrolyte 1. Goodenough JB, Annu Rev Mater Res 33, 91 (2003) 2. Badwal SPS, Ciacchi FT, Ionics 6, 1 (2000)					
 SOFC electrolyte grain size effect Tschope A, Ying JY, Nanostruc Mater 4, 617 (1994) Chiang YM, Lavik E, Kosacki, Tuller HL, Ying JY, J Electroceramics 1, 7 (1997) Suzuki T, Kosacki I, Anderson HU, J Am Ceram Soc 85, 1492 (2002) Kosacki I, Petrovsky V, Anderson HU, J Am Ceram Soc 85, 2646 (2002) Suzuki T, Kosacki I, Anderson HU, Solid State Ionics 151, 111 (2002) Kosacki, Anderson HU, Mizutani Y, Ukai K, Solid State Ionics 152-153, 431 (2002) Kosacki I, Suzuki T, Petrovsky V, Anderson HU, Solid State Ionics 136/137, 1225 (2002) Boaro M, Torvarelli A, Hwang JH, Mason TO, Solid State Ionics 147, 85 (2002) Maier J, "Nanoionics and soft materials science" in Nanocrystalline Metals and Oxides: Selected Properties and Applications, P. Knauth and J. Schoonman, Eds., Kluwer Academic Publishers, Norwell, MA (2002) p. 81 					

References (cont'd)
 SOFC YSZ/Alumina composite electrolyte 1. Navarro LM, Recio O, Duran P, J Mater Sci 30, 1931 (1995) 2. Navarro LM, Recio O, Duran P, J Mater Sci 30, 1939 (1995) 3. Navarro LM, Recio O, Duran P, J Mater Sci 30, 1949 (1995) 4. Choi SR, Bansal NP, Ceramics International 31, 39 (2005) 5. Feighery AJ, Irvine JTS, Solid State Ionics 121, 209 (1999)
 SOFC Anode Zhu WZ, Seevi SC, Mater Sci Eng A 362, 228 (2003) Costamagna P, Costa P, Antonucci V, Electrochimica Acta 43, 375 (1998) Uanner CW, Fung KZ, Virkar AV, J Electrochem Soc 144, 21 (1997) Maier J, Nature Materials 4, 805 (2005) Verweij H, Adv Mater 10, 1483 (1998) de Boer B, Gonzalez M, Bouwmeester HJM, Verweij H, Solid State Ionics 127, 269 (2000) Jiang SP, Chan SH, J Mater Sci 39, 4405 (2004)
 SOFC Cathode 1. Fleig J, Annu Rev Mater Res 33, 361 (2003) 2. Fleig J, Maier J, J European Ceram Soc 24, 1343 (2004) 3. Chan SH, Chem XJ, Khor KA, J Electrochem Soc 151, A164 (2004)

References (cont'd)				
Multiscale Theory				
-	Liu, W. K., and McVeigh, C. "Predictive Multiscale Theory for Design of Heterogeneous Materials." Computational Mechanics, 2007, DOI: 10.1007/s00466-007-0176-8.			
-	Cahal McVeigh, Franck Vernerey, Wing Kam Liu, Brian Moran, Gregory Olson. " <u>An</u> Interactive Microvoid Shear Localization Mechanism in High Strength Steels", Journal of the Mechanics and Physics of Solids, 55(2):225-224, 2007			
-	Vernerey F.J, Liu W.K, and Moran B. Multi-scale Micromorphic Theory for Hierarchical Materials. J. Mech. Phys. Solids. doi:10.1016/j.jmps.2007.04.008.			
-	Cahal McVeigh, Franck Vernerey, Wing Kam Liu and L. Cate Brinson. " <u>Multiresolution</u> analysis for material design". Computer Methods in Applied Mechanics and Engineering, 195(37-40):5053-5076, 2006.			
-	Liu, W. K., Karpov, E., and Park, H. S., Nano Mechanics and Materials: Theory, Multiscale Methods and Applications, Wiley, 2005.			
-	Park HS, Karpov EG, Klein PA, Liu WK, Three-Dimensional Bridging Scale Analysis of Dynamic Fracture. <i>Journal of Computational Physics</i> 207, 588-609, 2005			
-	W. K. Liu, E. Karpov, S. Zhang, and H. Park, "An Introduction to Computational Nano Mechanics and Materials," <i>Computer Method in Applied Mechanics and Engineering</i> , 193 (17-20): 1529-1578 2004.			
-	Li, S., and Liu, W. K., Meshfree and Particle Methods, Springer, (2004).			
-	Nemat-Nasser S., Hori M., Micromechanics: Overall Properties of Heterogeneous Materials, North Holland, 1999			
-	Vernerey F.J., McVeigh C., Liu W.K., Moran B., Tewari D., Parks D., Olson G. 3D Computational Modeling of Shear Dominated Ductile Failure of Steel, Journal of The Minerals, Metals and Materials Society, pp. 45-51, December 2006.			
-	Hao S., Liu W.K., Moran B., Vernerey F., and Olson G.B. Multiple-scale constitutive model and computational framework for the design of ultra-high strength, high toughness steels. Comput. Methods Appl. Mech. Engrg, 2004.			