Solid Oxide Fuel Cell Nanoand Micro-Structure Effects

Nano-phases in SOFCs

- Motivation: low-temperature SOFCs
- Nano-electrolyte materials
- Nano-cathode materials
- Nano-anode materials

Reduced Temperature SOFCs

- Nano-materials may help enable low-T devices
 - Temperatures 500°C or below possible
 - Nano-materials may be stable at low T
- Why reduced temperature?
 - Lower-cost balance of plant
 - E.g. heat exchangers
 - Better materials stability
 - Better, lower-cost materials
 - Seals, interconnects
 - New applications, e.g. portable and transportation
- How can nano-materials help?
 - Mitigating reduced reaction/transport rates as T is reduced

Issues

- Results not widely reproduced
- Not yet reproduced in bulk materials
- No nano-electrolyte fuel cell results to date
- Long-term stability
- Scientific issues
 - Solute segregation/concentration at grain boundaries
 "Blocking" species, e.g., Si diluted in nano-crystalline case
 - Space-charge effects/defect gradients
 - Differential transport ⊥, II to grain boundaries
 - Altered point defect energetics
 - Enhanced defect mobilities near GBs

- Combined oxide-metal
 - E.g., Cu-CeO₂
- However, these materials lack catalyst activity
 - Anode performance worse than Ni-YSZ
 - · Possible solution: add nano-phase catalysts

Effect of Precipitation Temperature

 Kinetics of Ru-induced performance increase

WK1 Area-specific resistance decreases with time

- Slower resistance decrease at lower temperature
- Consistent with slower Ru out-diffusion from chromite particles
- Breaks in curves current stopped for I-V and EIS measurements

Slide 23

WK1 Data showing rate of increase of performance versus temperature

See slides 18 and 19 for more options Worawarit Kobsiriphat, 1/18/2007

Comparison with Infiltration

- No additional processing steps required
- Precipitation yields uniformly small (< 5nm) nano-clusters
 - May be smaller than infiltrated materials
 - Nano-catalyst selectively added to active layer
 - Infiltration adds material to active layer and current collector / support layer
 May limit use of expensive materials

Summary and Conclusions

- Reduced temperature operation can widen range of SOFC applications
- Nano-electrolytes have potential for new lower-temperature (<500C) SOFCs
- Nano-cathodes will be critical for achieving good performance at 500C and below
 - Combine nano-structure and composites of optimal materials
- Nano-anodes may provide increased functionality for working with real fuels
 - Hydrocarbons with contaminants