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Abstract

For the triangular-shaped quantum well, the electron wave functions and energy values are found by
¨analytical solution of the Shrodinger equation. In approximation of impenetrable walls, two sets of solutions are

obtained, one corresponding to the symmetric, and the other to antisymmetric wave functions. The distributions
of the probability density give a clear picture of standing waves in a triangular-shaped plate. The comparison of
the system energy levels with those obtained for quasi-periodic boundary conditions give reasonable
coincidence. The results obtained proved to be useful in explanation of electronic optical absorption spectra of
some of the organic colorants, on the basis of FEMO approach (free electron molecular orbitals); it could be
used for other nanosystems with particles of triangular shape.
 2003 Elsevier Science B.V. All rights reserved.
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1 . Introduction

The approximation of a particle in a two-dimensional quantum well became very popular in the last
two decades due to active investigation of the artificial quantum-confined systems (see, for example,
Refs. [1–5]); besides, it is widely used for explanation of optical properties of the organic molecules
on the basis of the FEMO approach (free electron molecular orbitals), treating an electron delocalized
within a molecule [6–10]. Normally, the rectangular-shaped or circular well models are applied in the
cases mentioned. However, in some cases, the triangular-shaped quantum well could be the better
approximation: some of the organic dye molecules such as FD&C red No. 3 (erythrosin, shown in Fig.
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Fig. 1. The molecule of organic dye FD&C red No. 3 (a); the triangle used for theoretical considerations (b).

1) or Rhodamine have approximately triangular shape; this model also could be of interest in studying
pyramid-shaped quantum confined systems easily obtained by etching of semiconductor surfaces, etc.
Here we attempted the direct quantum mechanical treatment of the problem assuming impenetrable
boundaries; the results obtained are compared with similar results for other types of two-dimensional
wells and other boundary conditions.

2 . Theory

We consider the electron delocalized in a triangular-shaped quantum well with infinitely high
potential walls. To substantiate the example shown in Fig. 1, we must mention that in FEMO
treatment of the organic molecules as two-dimensional quantum wells, it is usually accepted [6–8]
that the walls of the well are situated at a distance of approximately one bond length from the
boundary atoms of a molecule. Taking account of this, we have drawn the external triangle in Fig. 1a,
considering it as the area of localization of an electron in FEMO approximation.

Taking the triangle to be equal-sided with the length of the sidea we assume it to be placed into a
right-hand cartesian reference system with axisx , x and x in the manner where the sides of the1 2 3

triangle are perpendicular to the axis (Fig. 1b). Then the equation of plane of the triangle could be
written as:

]Œx 1 x 1 x 5 a /2 2, (1)1 2 3

wherex , x and x are the coordinates of the points that belong to triangle.1 2 3

¨Under assumptions made, the Schrodinger equation for the quantum particle is

2 3 2
" ≠ C
]] ]]2 O 5EC, (2)22m ≠x0 n51 n

with wave functionC, energyE, and mass of the particlem . Introducing0

2m E02
]]k 5 , (3)2
"

one can rewrite (2) as



ARTICLE IN PRESS
P.N. Gorley et al. / Microelectronic Engineering 1 (2003) 000–000 3

3 2
≠ C 2
]]O 1 k C 5 0. (4)2
≠xn51 n

As in this case the potential energy of the particle interaction is equal to zero, and the system of
coordinates is cartesian, one can use method of variable separation, thus presentingC as the products
of three functions (C ), each one of its own variable.n

This gives a general solution in a form

C 5 A exp(ik x )1B exp(2ik x ), (5)n n n n n n n

with additional condition
3

2 2O k 5 k . (6)n
n51

HereA andB are integration constants, andi is imaginary unit. Transforming (5) to trigonometricn n

functions, we get
3

C 5P (A 1B )cosk x 1 i(A 2B )sink x . (7)f gn n n n n n n n
n51

To determine the exact wave function we need to imply the symmetry and boundary conditions,
namely:

(1) Symmetry condition. As (5) does not change with inversion of coordinatesx →2x , it meansn n

that eigenfunctions of Hamiltonian should be even

C (x )5C (2x ), (8)e n e n

or odd

C (x )5 2C (2x ). (9)o n o n

Therefore one needs to consider either even or odd wave functions; it is easy to show that condition
(8) could be fulfilled for all thex in (7) when A 5B , thusn n n

3

C 58P A cosk x (10)e n n n,
n51

while (9) is valid whenA 52B , that gives usn n

3

C 5 28i P A sink x (11)o n n n.
n51

(2) Impenetrable potential barrier conditions. As the particle cannot cross the borders, that implies
that wave function has to be zero at the boundaries

a
]]C (x 5 , x ,x )50 (n,p,r 5 1,2,3), (12)]e,o n p rŒ2 2

that leads to the discrete values ofk , namelyn

(a) for the even wave function
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]Œ2p
]]k 5 (2m 1 1) (m 50,1,2,3, . . . ), (13)n n ne e ea

(b) for the odd wave function

p]Œ ]k 5 2 2 m (m 51,2,3, . . . ). (14)n n no o oa

Here it is necessary to stress that whenm 50, the wave functionC , due to (11) turns to zero, thusn oo

the quantum particle cannot be in this quantum state, meaning that casem 50 should be omittedno

from (14). Introducing (13) into (10) and (14) into (11), we obtain the expressions for the wave
function of the particle:

(a) even case

3

C 58A A A P cosk x , (15)e 1 2 3 n nen51

(b) odd case

3

C 5 28iA A A P sink x (16)o 1 2 3 n non51

To find the valueA A A we use the wave function normalization1 2 3

S

E EC ?C *dS 51, (17)

whereS is the area of the triangle.
Having performed the necessary calculations, we obtain the expressions for wave functions and for

the squared wave functions, that have the meaning of probability:
(a) even case

3 x] n2 Œ ]P cos (2m 11) 2pne512 an512
]] ]]]]]]]]C (x ,x ,x )5 ? , (m 5m 5m ;m ), (18a)]e 1 2 3 2 1 2 3 ee e eŒ 4 43 3a ] ]]]]11 ?2 2

p (2m 1 1)ne

1282
]]C (x ,x ,x )5 ]e 1 2 3 2Œ3a

3 x] n2 Œ ]P cos (2m 1 1) 2pne an51
]]]]]]]]? , (m ±m ±m , or m 5m3 1 2 3 n pe e e e e4 1
] ]]]]11 ?O2 2
p (2m 11)n51 ne

±m ; (n,p,r 5 1,2,3)) (18b)re

(b) odd case
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3 x512 ] n2 2 Œ]] ]C (x ,x ,x )5 ?P sin 2m 2p , (m 5m 5m ;m ) (19a)]o 1 2 3 2 n 1 2 3 oo o o oŒ an513 3a

1282
]]C (x ,x ,x )5 ]o 1 2 3 2Œ3a

3 x] n2 Œ ]?P sin 2m 2p , (m ±m ±m , m 5m ±m ; (n,p,r 51,2,3))n 1 2 3 n p ro o o o o o oan51

(19b)

Since we applied to the general solution (7) the symmetry conditions (8) and (9) and the boundary
condition (12), the expressions (18) and (19) obtained here represent the unique solution of the
problem.

It follows from (18 and 19) that the probability for the particle to exist in the most symmetric states
for both even and odd states (18a) and (19a) is greater than for the other states.

Energy values for the particle in the system considered could be found by introducing (13) and (14)
into (6) and taking into account (3):

(a) for even states

3
2E 5E ?O (2m 1 1) , (20)e 0 ne

n51

(b) for odd states

3
2E 5 4E ?O m , (21)o 0 no

n51

where
2 2

" p
]]E 5 . (22)0 2m ao

From (20) and (21) it follows that quantum states of the particle are characterized by the discrete
values of energy. Even and odd wave functions in this respect go one after another, and the smallest
value of energy corresponds to the even state. It also seen that the same value of energy could
correspond to different combinations of quantum numbers, hence giving us degenerated energy levels.
For example:

(a) for even statesE(1,1,1)5E(2,0,0)5 27E .o

(b) for odd statesE(3,3,3)5E(5,1,1)5108E .o

3 . Comparison with traditional two-dimensional problems

In many cases, the rectangular well is a good approximation for FEMO analysis (for example, in
description of the properties of organic colorants like Fast Green or Basic Yellow, see Refs. [9,10]).

¨For this well with dimensionsL , L the analytical solution of the Shrodinger equation again has the1 2
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Fig. 2. Laboratory system geometry.

form (5) with two variables, there are also odd and even functions, and the electron energy levels for
the case of unpenetrable walls are given by the expression

2 2 2 2 2E 5 (h /8m ) (n /L 1m /L ), (23)o 1 2

n and m being the quantum numbers, even for the even solutions and odd for the odd ones.
It is interesting to note that the same energy spectra for the particle in the rectangular well could be

obtained using the quasi-periodic boundary conditions, considering the potential ‘walls’ of the well
like mirrors, which makes a quasi-periodic structure from the one cell, as is shown in Fig. 2a (here the
arrows show the directions of a particle’s motion, i.e., thek-vector, and the corresponding reflections).
It is evident, that the cell with its reflections form the periodic structure with the period doubled
compared to the cell dimensions. Applying to this structure the Born–von Karman boundary
conditions, we again get expression (23) for the energy.

A similar consideration based on the particle reflections by the walls of the well, could be applied
to the triangular-shaped well (Fig. 2b). We see, again, that the periodic structure is formed, and the
translation symmetry corresponds to the translations of the rhombus consisting of the two cells in the
directions of its sides. Using the Born–von Karman boundary conditions, we obtain for the energy
levels

2 2 2 2E 5 (2 h /3m a )(n 6n m 1m ) (24)o

This expression, although different from the ones obtained earlier ((20)–(22)), describes a rather
similar energy spectrum. Fig. 3a shows the first five energy levels given by (20)–(22), whereas Fig.
3b shows those given by (24). A close resemblance of the two spectra could be seen (we made the
corresponding comparison up to 15 levels, with similar result).

Fig. 4 shows distributions of probability density for different states of the particle in rectangular and
triangular wells. In all cases the pictures obtained show the definite pattern of standing waves in a
corresponding two-dimensional system, formed by reflections of the de-Broglie waves by the well’s

Fig. 3. Energy spectra given by(a) (20)–(22); (b) (24).
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Fig. 4. Probability density of wavefunctions for (a) rectangular quantum well withn 5m 54, (b) triangular quantum wells
with given quantum number values.

wall. We conclude that this result substantiates the idea of the mirror-like walls and the use of
quasi-periodic boundary conditions.

Calculations, performed with experimental data for energy spectra of the different organic dyes (to
be published separately) show the applicability of the approach developed. The proposed methodolo-
gy to calculate the wave functions in triangular-shaped quantum well could be applied to other cases
with triangular geometry.
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