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Abstract

It is shown that theoretical methods developed for a description of hopping transport in disordered inorganic solids

can be also successfully applied to a description of hopping transport in organic disordered materials, such as conju-

gated polymers, molecularly doped polymers and organic glasses. While the density of localized states (DOS) in in-

organic materials is believed to be exponential, a Gaussian DOS has been suggested for organic disordered materials.

The most powerful and rigorous theoretical method for the description of variable-range hopping (VRH) in the ex-

ponential DOS is based on percolation theory. We show that this percolation approach is also valid for systems with a

Gaussian DOS, thus being universal for inorganic and organic disordered materials. � 2002 Elsevier Science B.V. All

rights reserved.

PACS: 72.20; 72.80

1. Introduction

In various disordered inorganic and organic
materials, transport of charge carriers at low tem-
peratures is related to incoherent hopping between
localized states. Efficient theoretical methods have
been developed for inorganic systems. Among the
most successful methods, one can note the perco-
lation approach and the approach based on the
concept of the transport energy. However, these

methods are rarely applied to organic systems. On
the contrary, a description of hopping transport in
organic materials is often based on the ensemble
averaging of hopping rates, which is known to be
quite inappropriate for the description of hopping
processes. Such a situation is unsatisfactory, since
the physics of hopping processes in organic and
inorganic solids and the basic models for their
description are rather similar [1,2]. In both cases it
is assumed that the hopping rate of a charged
carrier Cij between two localized states i and j with
energies ei and ej separated by distance rij is de-
termined by the standard expression [1]

Cij ¼ C0 exp

�
� 2rij

a
� Eij

kT

�
� C0 expf�nijg; ð1Þ
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where C0 is the prefactor, a is the localization
length, Eij is determined as

Eij ¼ fjei � lj þ jej � lj þ jei � ejjg=2 ð2Þ
and l is the equilibrium Fermi level. It is also
usually assumed that the spatial positions of lo-
calized states and their energies are at random.
The main difference between models for inorganic
and organic materials is the choice of the density
of localized states (DOS), gðeÞ. While for inorganic
systems, like amorphous semiconductors, one
usually assumes an exponential DOS, for organic
materials it is believed that DOS is Gaussian [2]:

gðeÞ ¼ N

r
ffiffiffiffiffiffi
2p

p exp

�
� e2

2r2

�
; ð3Þ

where N is the total concentration of localized
states.
One of the most fruitful ideas in the field of

hopping transport was put forward by Miller and
Abrahams [3] who reduced the hopping problem
to that of calculating the conductivity of a random
network of resistances. According to this ap-
proach, the local resistance Rij between sites i and j
corresponds to the inverse hopping rate Cij:
Rij ¼ kT =ðe2CijÞ. For one-dimensional systems in
which resistances are connected sequentially, the
exact result for hopping conductivity can be ob-
tained by averaging the inverse rates or the hop-
ping times [4]. In two- and three-dimensional
systems the most advanced method for calculating
the hopping conductivity is based on percolation
theory [1]. The corresponding approach for the
variable-range hopping (VRH) in an exponential
DOS was suggested by Gr€uunewald and Thomas
[5]. Recently a somewhat modified approach to the
same problem was published by Vissenberg and
Matters [6]. Being most rigorous, the percolation
approach is rather elaborate for calculations and
more transparent treatments of the VRH were
always searched for. One of the most clear and
attractive theoretical approaches to the calculation
of temperature-dependent transport coefficients in
inorganic disordered solids with an exponential
DOS is based on the concept of the transport en-
ergy [7–9]. This approach has been extended to
systems with a Gaussian DOS [10] and it was re-

cently successfully applied to the calculation of the
temperature-dependent carrier drift mobility in
organic disordered systems [11]. In [11] we con-
sidered non-interacting charge carriers and calcu-
lated the temperature dependence of the dc
conductivity GðT Þ in a form

GðT Þ / exp
�
� C

r
kT

� �2�
; ð4Þ

with C � 0:45, which is very close to the result
obtained earlier by computer simulations [12].
Although based on transparent arguments, the

method of the transport energy [7–11] is not rig-
orous. In this report we extend for the first time the
consistent percolation approach to organic disor-
dered materials with a rapidly varying Gaussian
DOS described by Eq. (3).

2. Percolation theory for hopping in a Gaussian

DOS

The standard formulation of the percolation
approach is the following. Let us choose some
value of the transition rate C ¼ C0 expð�nÞ and
assume that the bond between two sites i and j
exists if Cij > C (or equivalently if nij < n). Then
the bond concentration is a function of n and it
increases with increasing n. At some n ¼ nc an
infinite percolation cluster of interconnected bonds
appears, which is responsible for the hopping
motion of charged carriers in the dc regime. The
critical value nc determines the exponential tem-
perature and concentration dependences of the
transport coefficients. According to percolation
theory, the infinite cluster appears when the aver-
age number of bonds per site hBi attains some
critical value Bc. Numerical calculations for the
percolation threshold in a system of random
sites give Bc � 2:7 [1]. The appropriate bonding
criterion for the percolation threshold has the
form [13]

hBðeÞi ¼ Bc; ð5Þ
where we take into account that the number of
bonds per site can be energy dependent. Indeed,
the number of bonds BðeiÞ per site with energy ei is
defined by
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BðeiÞ ¼
Z
dejgðejÞ

Z
drijh n

�
� 2rij

a
� Eij

kT

�
ð6Þ

so that BðeÞ is energy dependent even if the DOS
near the Fermi level is constant. The variation of
BðeÞ with energy is accounted for by using the
averaging procedure [14]

hBðeÞi ¼
R
degðeÞB2ðeÞR
degðeÞBðeÞ ; ð7Þ

where it is taken into account that at a given en-
ergy e, the probability for a bond to belong to the
infinite cluster is proportional not only to the DOS
but also to the number of bonds BðeÞ. The bonding
criterion determines the percolation threshold
n ¼ nc and hence the main exponential factor for
the conductivity,

G ¼ G0 expð�ncÞ: ð8Þ
In what follows, we apply the described procedure
to calculate the dc conductivity in a Gaussian DOS
for three-dimensional systems. After straightfor-
ward, though rather elaborate calculations, we
obtain from Eqs. (3), ((5)–(7)) the exponent for the
conductivity

�nc ¼
l � et
kT

; ð9Þ

where

et ¼ �
ffiffiffi
2

p
r ln1=2

bNa3

s4c

r
kT

� �3� �
ð10Þ

with b � 0:35=ð2
ffiffiffi
2

p
BcÞ � 0:045 and the quantity

sc determined by the self-consistent equation

sc ¼ � ln1=2 bNa3

s4c

r
kT

� �3� �
: ð11Þ

The numerator in Eq. (9) is equal to the energy
separation between the energy et and the Fermi
level. Therefore the energy et can be called the
transport energy. It follows from Eqs. (10) and
(11) that the parameter sc and hence the transport
energy et only weakly (logarithmically) depend on
temperature. On the other hand, the Fermi level l
is generally strongly temperature dependent, being
determined by the equationZ 1

�1

degðeÞ
1þ expððe � lÞ=kT Þ ¼ n; ð12Þ

where n is the carrier concentration. At low n, one
obtains [15]

l ¼ � 1
2

r2

kT

� 	
� kT ln

N
n

� 	
: ð13Þ

The last term on the right-hand side in Eq. (13)
determines a temperature-independent contribu-
tion to the conductivity exponent, so that if the
temperature variation of the conductivity is de-
scribed by using a temperature-dependent activa-
tion energy, the latter is not the distance between
the transport energy and l but contains only the
part that non-linearly varies with temperature.
Using Eqs. (8)–(13), one obtains the dependence of
the conductivity on the parameters r=kT and Na3.
The numerical solution of these equations gives for
the temperature dependence of the conductivity
Eq. (4) with C ffi 0:44 for Na3 ¼ 0:001 and
C ffi 0:38 for Na3 ¼ 0:02. These values are valid for
r=kT in the interval between 1 and 100. Our pre-
vious calculations based on the transport-energy
approach [11] give Eq. (4) with C ffi 0:46 for
Na3 ¼ 0:001 and C ffi 0:38 for Na3 ¼ 0:02, in ex-
cellent agreement with the percolation approach
used in this work.

3. Conclusions

Our results show that the standard percolation
approach developed for the description of inco-
herent hopping transport in inorganic systems can
also be successfully applied to the description of
hopping transport of charge carriers in organic
disordered materials. Calculations within the per-
colation approach give results in excellent agree-
ment with those obtained by using a more
transparent, though less rigorous, approach based
on the concept of transport energy [11].
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