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Abstract

The influence of contacts on linear transport through a molecular wire attached to mesoscopic tubule leads is

studied. It is shown that low dimensional leads, such as carbon nanotubes, in contrast to bulky electrodes, strongly

affect transport properties.

By focusing on the specificity of the lead-wire contact, we show, in a fully analytical treatment, that the geometry of

this hybrid system supports a mechanism of channel selection and a sum rule, which is a distinctive hallmark of the

mesoscopic nature of the electrodes. � 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Future electronic miniaturization may enter a
regime where devices are dominated by quantum
mechanical laws and eventually reach the single-
molecule scale [1]. Although molecular materials
for electronics have already been realized [2], their
implementation in real applications [3–5] still has
to cope with challenges in utilization, synthesis,
and assembly [6]. Concerning theoretical ideas and
methods the problem is also two-sided: on the one

hand many theoretical ideas are already footed on
past pioneering work, such as the proposal of
molecular rectification in 1974 [7] which was ex-
perimentally realized only 20 years later [8]. On the
other hand most of the conventional methods
frequently employed for characterizing transport
properties in microelectronic devices, such as the
Boltzmann equation, can no longer be applied at
the molecular scale. Here conductance properties
have to be calculated by employing full quantum
mechanical approaches and by including the elec-
tronic structure of the molecules involved.
Electron transport on the atomic and molecular

scale became a topic of intense investigation since
the invention of the scanning tunneling microscope
(STM). More recently, studies of transmission
properties of single molecular junctions contacted
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to metallic leads [9,10] have intensified the interest
in the basic mechanisms of conduction across mo-
lecular bridges. The archetype of such a molecular
device can be viewed as a donor and acceptor lead
coupled by a molecule acting as a bridge. In such
systems the traditional picture of electron transfer
between donor and acceptor species is re-read in
terms of a novel view in which a molecule can bear
an electric current [11]. Molecular bridges have
been realized out of single organic molecules [9,12],
short DNA strands [10], but also as atomic wires
[13–15]. Generally, contact effects alter the ‘‘in-
trinsic conductance’’ of the molecules in such
experiments and call for closer theoretical studies.
In a parallel development the use of carbon

nanotube (CNT) conductors has been the focus of
intense experimental and theoretical activity as
another promising direction for building blocks of
molecular-scale circuits [16,17]. CNTs exhibit a
wealth of properties depending on their diameter,
orientation of graphene roll up, and on their to-
pology, namely whether they consist of a single
cylindrical surface (single-wall) or many surfaces
(multi-wall) [18]. If CNTs are attached to other
materials to build elements of molecular circuits,
the characterization of contacts [19,20] becomes
again a fundamental issue. This problem arises
also when a CNT is attached to another molecular
wire, a single molecule or a molecular cluster with
a privileged direction of the current flow.
In the usual theoretical treatment of transport

through molecular wires, the attached leads are
approximated by a continuum of free or quasi-free
states, mimicking the presence of large reservoirs
provided by bulky electrodes. However such an
assumption may become inadequate when con-
sidering leads with lateral dimensions of the order
of the bridged molecule, as for CNTs [19]. The
latter have been recently used as wiring elements
[17], as active devices [17,21], and, attached to
STM tips, for enhancing their resolution [22,23].
With a similar arrangement the fine structure of a
twinned DNA molecule has been observed [24].
However, CNT-STM images seem to strongly
depend on the tip shape and nature of contact with
the imaging substrate [25]. This calls for a better
characterization of the contact chemistry of such
hybrid structures.

This paper addresses the influence of the mo-
lecular wire–electrode contacts on the linear con-
ductance when the spectral structure and the
geometry of the electrodes plays an important rôole.
This allows us to quantify to which extent meso-
scopic leads may affect the conductance. Owing to
the relevance of CNT-based devices, we focus on
bridges between tubular leads. In previous density-
functional-theory-based treatments the conduc-
tance through systems such as a C60 molecule in
between two CNTs has been calculated with high
accuracy [26]. These numerical approaches showed
a strong sensitivity of the current on the system
geometries and strength of the molecule–CNT
couplings.
In the present paper we focus on such contact

effects. As a simple model for an atomic or mo-
lecular bridge we use a homogeneous linear chain
which enables us to derive analytical expressions
for the conductance in a non-interacting electron
approximation. In addition, we implicitly assume
that no significant charge is transferred between
the leads and the molecular bridge at equilibrium
since this could lead to an electrostatic potential-
induced inhomogeneity [27]. The latter may hold
for an all-carbon [26] structure and makes it pos-
sible to investigate the properties of our model in
the whole parameter space. The system exhibits
distinct transport features depending on the
number and strength of contacts between the mo-
lecular bridge and the interface as well as on the
symmetry of the channel wave functions transverse
to the transport direction. Our findings, which are
common for leads with tube topology, are then
studied in detail for CNT leads (Fig. 1) by ana-
lytically treating the single-particle Green func-
tion. In particular, we demonstrate on the one
hand that configurations with only one molecule–
lead contact activated give rise to complex con-
ductance spectra exhibiting quantum features of
both the molecule and the electrodes; on the other
hand multiple contacts provide a mechanism for
transport channel selection leading to a regular-
ization of the conductance, entirely provided by
topological arguments. Channel selection particu-
larly highlights the rôole of molecular resonant
states by suppressing details assigned to the elec-
trodes.

466 G. Cuniberti et al. / Chemical Physics 281 (2002) 465–476



2. System and method

In a tight-binding description, the hamiltonian
of the entire system, H ¼ Htubes þ Hwire þ Hcoupling,
reads

H ¼
X

a¼L;R;wire

X
na;n0a

tana;n0a
cay
na
ca
n0a

�
X

mL 6Mc

CmL cLymLc
wire
1

�
þ h:c:

�

�
X

mR 6Mc

CmR cRymR
cwireN

�
þ h:c:

�
: ð1Þ

Here, the matrix element tana;n0a
¼ ea

na
dna;n0a � ca

hna;n0ai
contains the on-site energy of each of the
nwire ¼ 1; . . . ;N chain-atoms, ewire, the orbital en-
ergy relative to that of the lead atoms, eL;R, and cL;R,
cwire, and C are nearest neighbour hopping terms
between atoms of the left or right leads, molecular
bridge, and the bridge/lead interface, respectively.
Note that nL;R is a two-dimensional coordinate
spanning the tube lattice. Summations over mL and
mR run over interfacial end-atoms of the leads. In
general, there areM such atomic positions, defining
the perimeter of the tube ends. The number of hy-
bridization contacts between a tube and the bridge
range betweenMc ¼ 1 (single contact case, SC) and

Mc ¼ M (multi-contact case, MC). Typical real
molecular wires are p-conjugate carbon chains with
thyol end groups which in the present treatment are
replaced by the linear chain model.
Since the major results we present are not

qualitatively affected by the use of more realistic
quantum chemical models which take into account
the precise structure and properties of the molec-
ular bridge and of the attached leads, we keep the
description of our problem at the level of the tight-
binding model. In order to highlight the topolog-
ical properties of tubular leads, we first study the
simplest case in which periodic boundary condi-
tions are imposed on semi-infinite square lattice
stripes, with the cuts parallel to the lattice bonds.
We call this electrode specie square lattice tubes
(SLT). In the case of CNT, when the graphene
honeycomb lattice is rolled along the lattice bonds
such that ‘ hexagons are transversally wrapped, an
armchair single wall (‘; ‘) nanotube is obtained,
and M ¼ 2‘. According to Eq. (1) CNT are then
described at the single-band tight-binding level for
p orbitals. This is equivalent to assume that among
the four valence carbon orbitals no interaction
between the r (2s and 2px;y) and p orbital is sig-
nificant because of their different symmetries. The
fourth electron, a pz orbital, determines the elec-
tronic properties which can be calculated by means
of a tight-binding treatment, on the same level as
we treat the molecular bridge. There are two such
electrons per unit cell in a honeycomb structure,
the p and p
 band, rendering the electronic prop-
erties of the material interesting, i.e. it can be a
priori either metallic or semiconducting [28].
We study quantum transport in the framework

of the Landauer theory [29] which relates the con-
ductance of the system in the linear response regime
to an independent-electron scattering problem [30].
The electron wave function is assumed to extend
coherently across the whole device. The two-ter-
minal conductance g at zero temperature is simply
proportional to the total transmittance, T ðEFÞ, for
injected electrons at the Fermi energy EF

g ¼ 2e2=h
� �

T ðEFÞ: ð2Þ

The factor 2 accounts for spin degeneracy. The
transmission function can be calculated from
the knowledge of the molecular energy levels, the

Fig. 1. Schematic representation of the molecular wire–CNT

hybrid with single (bottom) and multiple (top) contacts. On-site

energies ea¼L;R;wire are chosen to be zero.
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nature and the geometry of the contacts. One can
see this by expressing the Green function matrix of
the full problem, G�1 ¼ Gwire�1 þ RL þ RR, in
terms of the bare wire Green function and the self-
energy correction due to the presence of the leads.
Making use of the Fisher–Lee relation [31] one can
finally write

T ðEÞ ¼ 4Tr DLðEÞGðEÞDRðEÞGyðEÞ
� �

; ð3Þ

where

DaðEÞ ¼ i

2
RaðzÞ
�

� Ray ðzÞ
����

z¼Eþi0þ
: ð4Þ

For the system under investigation where only the
first and last atom of the chain is coupled to the
leads, the formula for the transmission simplifies to

T ðEÞ ¼ 4DLðEÞDRðEÞ G1N ðEÞj j2; ð5Þ
where the spectral densities DL and DR are the only
non-zero elements ðDLÞ11 and ðDRÞNN , respectively,
of the matrices D. The matrix element DLðRÞ is the
spectral density of the left (right) lead. It is related
to the semi-infinite lead Green function matrix
GLðRÞ. It is minus the imaginary part of the lead
self-energies (per spin),

Ra ¼ Ka � iDa ¼
X
ma;m0

a

CmaC


m0

a
Ga

mam0
a
; ð6Þ

with a ¼ L;R. Owing to the causality of self-en-
ergy, its real part K can be entirely derived from
the knowledge of D via a Hilbert transform.
The RHS of Eq. (5) coincides with formulas

used to describe electron transfer in molecular
systems [32]. The above relationship between the
Landauer scattering matrix formalism on the one
side and transfer hamiltonian approaches on the
other side has been worked out in the recent past
[11,33] showing de facto their equivalence. This
enables us to make use of the formulas from a
Bardeen-type picture in terms of spectral densities,
which is often convenient for an understanding
and analysis of results obtained.

3. Molecular Green function

One has to calculate from the N � N matrix,
Gwire�1 ¼ E þ i0þ � Hwire, the Green function

matrix element G1N needed in Eq. (5). This matrix
element refers to the two ends of the N-atom-
molecule. Its computation requires an N � N
matrix inversion. Since only the molecular-end on-
site energies are perturbed by the interaction with
the leads via the self-energies Ra, some general
conclusions can already be drawn without an ex-
plicit computation of G1N , namely one can write
[34]

G1N ¼ Gwire
1N

1� RLGwire
11

� �
1� RRGwire

NN

� �
� RLRR Gwire

1Nð Þ2
:

ð7Þ
The interaction with the leads dresses, via the self-
energy Ra, the bare molecular wire Green function
element Gwire

1N . The latter can be calculated analyt-
ically in the case of a homogeneous wire (ewiren ¼
ewire, cwirehna;n0ai

¼ cwire). In fact, upon projecting on the
N dimensional molecular wire basis, the determi-
nant of the bare molecular Green matrix factorizes
into a dimensionless function of only the number
of chain atoms, and of the ratio gwire ¼
ðE � ewireÞ=ð2cwireÞ. This leads to a closed form for
the molecular contribution to the conductance.
Namely, one can easily check that Gwire

1N ¼
cwire

N�1
detðGwireÞ ¼ ðcwireÞ�1n0=nN , and Gwire

11 ¼
Gwire

NN ¼ cwire
�1

nN�1=nN , where the exact form of n
reads:

nN gwire
� �

¼ gwire
	

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgwireÞ2 � 1

q �Nþ1

� gwire
	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgwireÞ2 � 1

q �Nþ1

:

After some algebra one finds that n possesses the
recursive property nNnN�2 ¼ n2N�1 � n20, which
leads us to re-write Eq. (7) as

n0
cwireG1N

¼ nN � RL

cwire

	
þ RR

cwire

�
nN�1 þ

RLRR

cwire
2 nN�2:

ð8Þ

In other words, the inverse Green function
matrix element connecting left and right leads can
be written as a sum of terms, representing the in-
verse of the bare Green function matrix elements
for a wire of N , N � 1, and N � 2 atoms. In the
limit of weak contact coupling, the behavior of the
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G1N element is dominated by nN , leading to N
transmission resonances in the conductance of unit
height. Nevertheless, if the effective coupling be-
tween the molecule and the lead is much larger
than cwire, nN�2 will become the dominant term. As
a consequence the conductance spectrum is effec-
tively that of an ðN � 2Þ-atomic wire [35]. The
resonant behavior inside the wire band (jgwirej6 1)
and its modification due to the lead coupling is
easily understood by writing the transmission as
T ¼ 4d2 sin2 ð#Þ=D, where the denominator D
takes the following compact exact form valid for
all N P 1

D ¼ sinðN
�

þ 1Þ#� d2
�

� k2
�
sinðN � 1Þ#

� 2k sinN#
�2 þ 4 d sinN#ð � kd sinðN � 1Þ#Þ2:

Here r ¼ k � id ¼ R=cwire is the self-energy of the
leads (for simplicity assumed to be equal) nor-
malized by the wire hopping. The parameter

# ¼ cos�1 gwire ¼ i

2
ln

gwire �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gwire

2 � 1

q
gwire þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gwire

2 � 1

q ; ð9Þ

is real in the wire band giving rise to resonances for
injected electrons matching the wire eigenenergies.
Outside the wire band # is pure imaginary (sin
functions are effectively sinh functions), and the
transmission has a power law dependence on en-
ergy and an exponential dependence on the wire
length, that is

T 
 j2gwirej�2N for jgwirej � 1; ð10Þ

in agreement with previous results [36]. This ana-
lytic expression for the transmission provides the
generalization of existing results [32,33,37] to the
case with non-vanishing real part of the self-ener-
gies. The density of states N ¼ �ImTrfGg=p can
also be written in a closed analytical form. One can
therefore take advantage of the fact that, due to
the wire homogeneity, all the diagonal elements
except the first and the last one coincide,

Gkkj1<k<N ¼ 1

cwire
nN�1 � 2rnN�2 þ r2nN�3

nN � 2rnN�1 þ r2nN�2
:

By using parametrization (9) one can easily recast
the density of states into the compact form

N ¼� 1

pcwire

� Im N sinN#
�

� 2ðN � 1Þr sinðN � 1Þ#
þ ðN � 2Þr2 sinðN � 2Þ#

�
= sinðN
�

þ 1Þ#� 2r sinN#þ r2 sinðN � 1Þ#
�
:

4. Electrode self-energy

In calculating the spectral function, we make use
of the assumption of identical left and right leads
and drop the self-energy indices in Eq. (6). Since
the Hamiltonian is discrete, we can write the lattice
Green function G ¼ ðE þ i0þ � HÞ�1 in matrix
form by rearranging the two dimensional n lattice
coordinate in Eq. (1). We assume the x direction to
be parallel to the tubes (and to the transport di-
rection) and y to be the finite transverse coordinate
(see Fig. 1). The latter is curvilinear with ny span-
ning M sites with periodic boundary conditions.
The lattice representation of the lead Green

function is needed in the calculation of the self-
energy contribution. It can generally be written by
projecting the Green operator onto the localized
state basis, wkx;ky ðnx ¼ border; nyÞ ¼ vkx/ky ðnyÞ, of
the semi-infinite lead

Gnyn0y Eð Þ ¼ ny E
����D

þ i0þ � H
��1���n0yE

¼
X
kx;ky

vkx/ky ðnyÞv

kx
/


ky
ðn0yÞ

E þ i0þ � Ekx ;ky

: ð11Þ

4.1. One-dimensional electrodes: Newns model

We first recall the particular case of linear chain
electrodes (onto which we will map our system due
to the validity of a channel selection). For such a
simple model the dispersion relation as a function
of the lattice on-site energies e, of the hopping
terms c, and of the lattice spacing a is simply given
by E ¼ e � 2c cos kxa. As a result the surface Green
function for the semi-infinite chain is obtained by
inserting the wave function at the lead origin
vkx ¼

ffiffiffiffiffiffiffiffi
2=p

p
sin kxa in the defining expression (11)

and transforming the only sum over momenta into
an integral, due to the infinite system size. Thus,
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GðEÞ ¼ a
p

Z p=a

�p=a
dkx

sin2 kxa
E þ i0þ � e þ 2c cos kxa

¼ eikxðEÞa

�c
;

where we solved the integral according to Brodo-
vitsky [38] and we made use of the dispersion re-
lation. The resulting spectral density, given by Eq.
(6), is the semi-elliptical local density of states
(LDOS) as obtained by Newns in his theory of
chemisorption [39]

DNewnsðgÞ ¼ C2
eff

c

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p
Hð1� jgjÞ:

Ceff is the strength of the single contact between
the molecule and the semi-infinite one-dimensional
leads, g ¼ ðE � eÞ=ð2cÞ is the band-normalized
energy, and H the Heaviside function. The real
part of the self-energy, responsible for shifting the
molecular resonances, is simply proportional to
cos kxa and thus linear in energy. Its full depen-
dence on energy is given by Hilbert transforming
D, and it reads

ReR ¼ C2
eff

c

� g
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 � 1

p
ðHðg � 1Þ � Hð�g � 1ÞÞ

�
:

4.2. Square lattice tubular electrodes

Square lattice leads are characterized by peri-
odic boundary conditions perpendicularly to the
lead direction. Transverse momentum quantiza-
tion leads to kjya ¼ 2pj=M (with 06 j < M). The
surface Green function for such a system can be
written as

Gnyn0y ðEÞ ¼
a

pM

X
ky

Z p=a

�p=a
dkx

�
sin2 ðkxaÞujðnyÞu


j ðn0yÞ;
E þ i0þ � e þ 2c cos kyaþ 2c cos kxa

¼ 1

M

XM�1

j¼0
ujðnyÞ ~GGjðEÞu


j ðn0yÞ; ð12Þ

where ~GGjðEÞ ¼ �eikjxðEÞa=c has been obtained by
solving an integral formally equivalent to the lin-
ear chain case and using the dispersion relation

E ¼ e � 2c cos kjya
�

þ cos kjxðEÞa
�
: ð13Þ

The transverse profile of the wave function is given
by ujðnyÞ ¼ expðikjynyaÞ. Note that the wave func-
tion is obtained by a further normalization,
namely / ¼ u=ðMaÞ1=2.
The self-energy finally reads as a sum of

weighted longitudinal wave function profiles

R ¼ 1

M

XM�1

j¼0

~GGjðEÞgj=M ½C�;

where the weight

gj=M ½C� ¼
XM�1

m¼0
CmujðmÞ

�����
�����
2

ð14Þ

is the contact-averaged transverse wave function.
Depending on the contact geometry one has to
specify the distribution of the Cm contacts to cal-
culate the weight g and thus the self-energy. Note
that gð�Þ is formally the square modulus of the
Fourier series of Cð�Þ; thus the zero-mode trans-
verse momentum state j ¼ 0 contributes to g with
the square of the mean contact strength. Due to
the geometry of the lead surface, it is reasonable to
assume a uniform distribution of contacts between
the molecular wire and the electrodes. For contacts
of equal strength Cm ¼ Ceff=

ffiffiffiffiffiffi
Mc

p
, active on

Mc6M sites, we obtain a modulation for the
contributing channels governed by

gj=M Ceff ;Mcð Þ ¼ C2
effMc

sinc2 pjMc=Mð Þ
sinc2ðpj=MÞ

;

where sincðx 6¼ 0Þ � sinðxÞ=x, and sincðx ¼ 0Þ � 1.
One can decompose the spectral density into a sum
over the spectral densities of each state j. Namely
D ¼ Dð0ÞP

j wjðEÞ, with Dð0Þ ¼ C2
effMc=ðcMÞ. The

channel weights are obviously independent upon
rotation of the interfacial coupling position as R
itself is.
In Fig. 2, the weights wjðEÞ are visualized for

different contact values 16Mc6 6.
For the case M ¼ Mc the contributions from all

states are suppressed except the state with zero
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transverse momentum, which is the outcome of the
sum rule (14). That is, g ¼ C2

effMdj;0. Thus the
configuration with all contacts of the tube ends
coupled to the molecule with strength Ceff=

ffiffiffiffiffi
M

p
is

equivalent to the case of a single contact with
strength Ceff to a one-dimensional lead (previous
section). Moreover a scaling law is found for R,
and a fortiori for the conductance given by
g ¼ gð�CC

ffiffiffiffiffiffi
Mc

p
Þ, where �CC is the local contact

strength.
In Fig. 3, D is displayed as a function of energy,

lead diameters and active contacts. As easily visi-
ble, it is only for values Mc of the order of the
available contactsM that the mesoscopic nature of
the scattering channels enter the spectral density.
The larger the tube diameter the lower is the
number of contacts which are needed to reach a
MC-like spectral density. This observation justifies
the use of the one-dimensional Newns model for
leads of lateral dimension much larger than the
contacted molecule but also shows the limit of this
approach when dealing with quasi-one-dimen-
sional leads. It remains to investigate to which

extent the results obtained so far can be general-
ized to realistic quasi-one-dimensional structures
such as CNT.

4.3. CNT electrodes

When the armchair (‘; ‘) CNT topology is im-
posed the number of carbon sites at the interface is
M ¼ 2‘. The eigenvalues of the tight-binding
hamiltonian (1),

E� kjx; j
� �

¼ e � c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 cos

jp
‘

	 �
cos

kjxa
2

	 �
þ 4 cos2

kjxa
2

	 �s
;

ð15Þ

are obtained in a basis set given by symmetric (+)
and antisymmetric (�) site configurations of the
graphene bipartite lattice, corresponding to p and
p
 orbitals respectively, [28,40]. The longitudinal
momentum is restricted to the Brillouin zone,
�p < kjxa < p, and the transverse wave number
16 j6 2‘ labels 4‘ bands, as many as the number

Fig. 2. Spectral weights wjðEÞ plotted for different contact valuesMc; a non-linear grey level scale is used with black corresponding to 0

and white to 1; small weights are amplified for better visualization. In every panel the horizontal axis represents the normalized energy

�26 ðE � eÞ=ð2cÞ6 2, and the vertical axis the normalized wave number 06 j=M < 1. Note that in the mesoscopic limit, Mc=M K 1,

the states j 6¼ 0 match the nodes of DjðEÞ: only the zero-transverse momentum j ¼ 0 contributes to transport.
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of atoms in the unit cell of a (‘; ‘) CNT. The two
bands corresponding to j ¼ ‘ are singly degener-
ate. They are responsible for the metallic character
of armchair CNTs (these two bands cross at the
Fermi level E ¼ e for k‘xa ¼ �2p=3). Also the two
outermost bands corresponding to j ¼ 2‘ are sin-
gly degenerate while the other remaining (4‘� 4)
bands are collected in (2‘� 2) doubly degenerate
dispersion curves.
The single-particle Green function in a lattice

representation for two sites belonging to the same
sub-lattice can be still written as in Eq. (12) as

Gny ;n0y ðEÞ ¼
1

2‘

X2‘
j¼1

uj ny
� �

~GGjðEÞu

j ðn0yÞ; ð16Þ

where ujðnyÞ ¼ expðikjynjyaÞ, with kjya ¼ pj=‘, and
16 j6 2‘. Note that in Eq. (16), ny and n0y should
be either even or odd (that is they should belong to
the same sublattice). The semi-infinite longitudinal
Green function is given by

~GGj Eð Þ ¼ a
8p

X
b¼�

Z p=a

�p=a
dkjx

sin2 kjxa=2
� �

E þ i0þ � Eb kjx; j
� � :

The integral can be worked out analytically by
extending kjx to the complex plane and adding
cross-cancelling paths (parallel to the imaginary
axis) along the semi-infinite rectangle in the half
plane Imkjx > 0 and based on the interval between
�p=a and p=a. The closing path parallel to the real
axis gives a real contribution linear in energy. This

generalizes the approach by Ferreira et al. [41],
recently adopted for obtaining an analytical ex-
pression for the diagonal Green function of infinite
achiral tubes, to the case of semi-infinite CNTs.
The determination of the poles inside the integra-
tion contour, given by

cos
qjba

2

 !
¼ � 1

2
cos

jp
‘

	 �

� b
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E � e
2c

	 �2
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	 �s

allows for the calculation of the residues and thus
of the surface Green function. One finds
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where the choice of the contributing pole through
the branch parameter b
 ¼ sign ðE � eÞ has to be
taken into account. The LDOS, obtained from the
imaginary part of the surface Green function after
Eq. (17) is plugged into Eq. (16), is shown in Fig. 4.
It clearly differs from the LDOS of an infinite CNT
as depicted for comparison in the right panel. As
for the case of the SLT the pinning of the longi-
tudinal wave function at the surface of the semi-
infinite systems cancels all border zone anomalies

Fig. 3. The normalized spectral density Dc=C2
eff plotted for different maximum values Mc as in Fig. 2; the x-axis represent the nor-

malized energies �26 ðE � eÞ=ð2cÞ6 2, the y-axis label the dimensionality of the leads (number of possible contacts) Mc 6M 6 20.
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when qj�a matches multiples of 2p. In infinite SLTs
these states are the only resonant states (van Hove
singularities) so that the surface LDOS of a semi-
infinite SLT never diverges (as it is shown in the
left panel of Fig. 5). On the contrary, in CNTs
there are states with zero group velocity outside

the border zone which are responsible for the
singularities of the spectral density of semi-infinite
CNTs (left panel of Fig. 4).
The self-energy for a CNT lead is more com-

plicate than the one for a SLT owing to the
missing equivalence of the sites belonging to the

Fig. 4. Left panel: the normalized spectral density for a semi-infinite (‘; ‘) CNT lead in the SC configuration; it corresponds to the

LDOS at any atom site at the cut of the CNT lead. For comparison the dispersion relation and the LDOS of an infinite (‘; ‘) CNT are
shown in the middle and right panel, respectively. Solid lines in the dispersion relation panel indicate doubly degenerate bands, dashed

lines singly degenerate bands. Here ‘ ¼ 10, and on-site energies and hopping terms refer to a ¼ L;R-leads.

Fig. 5. The normalized spectral density as a function of energy and active contacts is plotted for M ¼ 10 possible atomic contacts

available; on-site energies and hopping terms refer to a ¼ L;R-leads. The right panel illustrate numerical results after [42] in full

agreement with the analytics showed in the text.
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two different sub-lattices. However, since the lon-
gitudinal part of the Green function, Eq. (17), is
the same for all diagonal and off-diagonal terms of
the surface Green function, the self-energy can still
be cast into the form

R ¼ 1

2‘

X2‘
j¼1

~GGjðEÞgj=‘½C�:

However, for the calculation of

gj=‘ C½ � ¼
X2‘
m¼1

CmujðmÞ
�����

�����
2

; ð18Þ

one has to specify the sub-lattice components of
the transverse wave function and whether they
belong to a bonding or anti-bonding molecular
state. Again the distribution of the Cm contacts is
needed in order to calculate the weight g and thus
the self-energy. Eq. (18) simplifies considerably in
the SC case: g ¼ C2. Since g is uniform in j the self-
energy is simply proportional to the diagonal semi-
infinite Green function and, as a consequence, the
spectral density is proportional to the local density
of states (Fig. 4). The MC case (Cm ¼ Ceff=

ffiffiffiffiffi
2‘

p
) is

also easily tractable leading to a sum rule over the
possible conducting channels. However a direct
proof is provided by the intuitive consideration
that only the p-bonding state can contribute to the
MC spectral density (all the other states have a
non-constant spatial modulation provided e.g. in
[43]). Following our notation the p-bonding state
corresponds to j ¼ ‘. Fig. 5 shows the spectral
density in the intermediate regime between the SC
and MC limits. The two different lead lattice
structures carry the same physical information
only in the MC limit case.

5. Discussion and concluding remarks

It is interesting to recollect the results for the
MC-spectral density, DMC, in all three lead models
considered so far. Using the dispersion relation
(13) and the surface Green function in Eq. (12) the
spectral density for SLT leads coincides formally
with the Newns LDOS with an energy shift
DSLT
MC ðgÞ ¼ DNewnsðg þ 1Þ. For CNTs Eqs. (15)–(17)

lead to DCNT
MC ðgÞ ¼ DNewnsðg þ 1

2
Þ. From the above

discussion it is clear that the multiple contact
configuration suppresses features associated with
the two-dimensional character of tubular leads,
apart from an energy shift. In our model, the latter
is the only remnant the system preserves from the
transverse momentum component.
In contrast, the SC case is strongly dependent

on the lead underlying structure. The spectral
density for a single contact, DSC, reduces to the
LDOS in the lead at the point where the molecular
wire is contacted with strength C,

DSC ¼ pC2LDOS:

It is, in particular, in the SC scenario that the
conductance of the molecular wire might be
strongly affected by the nature of the leads [35].
Nevertheless, once the nature of the contact can be
inferred, one can think to cure the spurious inser-
tion in the conductance by filtering out the contri-
bution of the leads from the molecular resonances.
For instance, in the CNT-enhanced STM tips [22]
the improved resolution images can be cleaned by
de-convolving them using model assumptions for
the leads and their contact geometry.
Another significant consequence of the peculiar

contact dependence of the spectral density is the
possibility to understand the influence of the
mesoscopic character of the leads. In the limit of
largeM (at fixed Mc), g looses its granularity being
sampled by many more states compared to its
nodes, whereas for Mc=M K 1 an increasing num-
ber of nodes matches the decreasing number of
states. This determines a reduction in the self-en-
ergy, and thus in the width of the molecular res-
onances, highlighting the quantum features of the
wire. The latter result in a quite striking behavior
for CNTs because of the band anomalies outside
of the border zone which strongly determine the
resonant behavior of the spectral density.
To conclude, we have shown that novel features

are expected to arise in the conductance of a mo-
lecular wire connected to nanotube leads. The
commonly used approximation of a pure imagi-
nary, flat, wide band self-energy is not valid when
employing tubular leads. Nevertheless, the con-
ductance of a homogeneous molecular wire still
possesses an analytical form in the entire regime of
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the wire parameters and allows for the insertions
of a non-vanishing real self-energy, necessarily
arising when considering nanotube leads. By tai-
loring the geometry and dimensionality of the
contacts, it is possible to perform a channel se-
lection. In the MC limit the conductance becomes
independent of the lattice structure of the tubular
electrodes, transport is dominated by topology
properties and is effectively one-dimensional.
Furthermore, the conductance obeys a universal
scaling law in the multiple contact configuration.
We would further like to stress that the derived
analytical expression for the semi-infinite CNT
self-energy allows for a full analytical treatment of
the linear conductance problem. The possibility to
handle an exact expression of the semi-infinite
CNT Green function may serve as a first step in
analytical treatments of more complex carbon-
based molecular structures such as T- or Y-junc-
tions [44].
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