
Substantial improvement is needed in almost every

aspect of drug development. Scientists’ ability to

design drugs that exploit disease phenotype is

limited, knowledge about the range of actions of

even common medications is meager and the 

ability to customize drugs specific for human

subpopulations remains beyond reach. In addition,

the production pipeline is long and expensive, and

the effectiveness of its end products – some

5000 drugs currently in commerce, targeted at

~500 medical conditions – varies with disease

target and with individual genotype in ways that

are poorly understood.

This picture, however, is about to change

dramatically and there is excellent reason to be

sanguine about the future because biology has

begun to emerge as a predictive, quantitative

science with a rational basis for rapid design and

discovery. As a consequence, the coming decades

will witness a radical increase in the number of

available drugs and targets and in their clinical

efficacy and safety, and a reduction in their cost of

production and time to market.

The new era that is now upon us is defined and

symbolized by the genomic revolution – a revolution

Recent advances in massively parallel experimental and computational

technologies are leading to radically new approaches to the early phases of

the drug production pipeline. The revolution in DNA microarray technologies

and the imminent emergence of its analogue for proteins, along with

machine learning algorithms, promise rapid acceleration in the identification

of potential drug targets, and in high-throughput screens for subpopulation-

specific toxicity. Similarly, advances in structural genomics in conjunction

with in vitro and in silico evolutionary methods will rapidly accelerate the

number of lead drug candidates and substantially augment their target

specificity. Taken collectively, these advances will usher in an era of

predictive medicine, which will move medical practice from reactive therapy

after disease onset, to proactive prevention.
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that encompasses high-throughput sequencing, and

the technologies that exploit and add to the

information it generates. The latter include various

DNA microarray methods that monitor genomic

change [1,2], emerging array methods for monitoring

protein profiles [3,4], high-throughput methods for

genetic characterization of disease diathesis and

resistance[5], high-performance computing for

biological discovery[6] and real-time data analysis

and data integration.

These technologies, as indicated below, will

accelerate the discovery and molecular

characterization of disease-specific genetic pathways

[7,8], and of ligand-specific toxicity and metabolic

pathways [9]. They will thereby accelerate the

discovery of protein therapeutics and the

identification of candidate drug targets, while

moving us toward individualized medicine

(therapy that takes into account genetic markers for

predisposition to drug side effects and/or efficacy). In

this article, we focus predominantly on a conceptual

overview of genomic-related methods for identifying

lead candidates for targets and for drug design. We

specifically omit the important area of lead refinement

and soft drug design [10], which takes into account

the distribution and metabolism of the drug in a

physiological system, and its activity at the intended

site of action. We further restrict ourselves to protein

therapeutics, omitting the important and currently

more successful arena of small-molecule drugs [11,12].

Microarrays and the challenge of diversity

The development of DNA microarrays to monitor the

expression of all or a substantial fraction of the

expressed genes of a cell [13,14], and more generally

for characterizing the change in genomic expression

that accompanies normal development and disease

progression, will have deep ramifications for

identifying highly specific disease targets and for

customizing drugs [7,8,15,16]. Microarray

technologies vary greatly, each has its own set of

merits and limitations. They all involve immobilizing

DNA probes on a glass or nylon surface. The probes

are reverse complements of target regions on mRNA

(or cDNA) whose concentration, or expression level,

they monitor through hybridization. They can be

manufactured either as PCR products of intact cDNA

(300–1000 bases long) spotted onto the surface [1],

or as short oligonucleotides (20–30 bases long)

synthesized in situ [2]. The latter requires only the

sequences of the target genes (not the DNA itself),

and thereby maximally exploits the reference

human genome sequence, which is becoming

increasingly informative as the amount of sequence

and fold coverage (how many folds clone libraries

cover a genome) increase. A 1–2 cm2 array can, in

principle, probe for several hundred thousand genes.

Moreover, when oligonucleotide probes are much

shorter than their targets, they can be selected to

optimize specificity.

Applications of microarray technology to disease

biology and diagnosis, and especially to cancer, have

been extensive. The concept that large numbers of

transcript profiles might permit stratification of

previously unrecognized cancer subtypes is

particularly important [17]. This was shown

clinically when Golub et al. [18] reported that

transcript profiles of leukemia cells could be divided

into acute myeloid and acute lymphoblastic

subtypes without the researcher knowing on what

basis they could be distinguished. Alizadeh et al. [19]

subsequently identified gene signature profiles for

two subgroups of distinctly differentiated B cells,

which correlated with patient survival. Alon et al.

[20] studied gene expression in samples of tumor

colon tissue and were able to distinguish them from

normal colon tissue samples on the basis of gene

expression. Examples of similar studies include

breast cancer [21] and ovarian cancer [22].

An increasingly common practice is to use

customized arrays to probe for particular sets of

genes, for example, if oxidant damage is

hypothesized to be important in the etiology of lung

cancer [23], a stress array consisting of probes for

perhaps hundreds of antioxidant and repair genes

could be used; if polymorphism in apoptosis genes is

believed to underlie resistance and susceptibility to

tuberculosis, an array to probe for expression of

apoptosis genes can be designed to characterize gene

expression in infected alveolar macrophages [24].

In this way, the high-throughput advantages of

arrays for discovery are combined with hypothesis-

driven research.

In addition to showing that expression patterns

cluster to form diagnostic fingerprints, these and

other results offer promise for identifying genes and

pathways that are potential therapeutic targets.

Thus Golub et al. [18] found an overexpression of the

HOXA9 oncogene associated with refractoriness to

therapy directed against acute myelogenous

leukemia, and Alizadeh et al. uncovered sets of genes

implicated in apoptosis inhibition [19].

The upregulation or downregulation of genes

can either be the cause or the result of the disease.

Moreover, owing to the complexity of gene

regulation and the multigenic nature of most

diseases, microarray experiments on disease

tissues typically uncover hundreds of genes with

altered expression. Thus, to pinpoint specific genes

as drug targets, traditional methods are still

required, although they are increasingly being

integrated with genomic techniques [25,26]. What

microarrays do best is high-throughput screening –

and this can be for target validation as well as for

identification. For example, if a gene deletion or

mutation produces a genomic expression pattern

similar to that of a disease, the gene and its product

are potential drug targets. Similarly, microarrays

can be used to test the efficacy and toxicity of drug

candidates by selecting those that can best recover

TRENDS in Biotechnology  Vol.20 No.1  January 2002

http://tibtech.trends.com

30 Review

Zhiping Weng*
Charles DeLisi*
Biomedical Engineering
Dept and Bioinformatics
Program, Boston
University, Boston
MA 02215, USA.
*e-mail: zhiping@bu.edus



the normal pattern of gene expression. These

experiments can be performed on cells with

different genotypes to predict functional variation

in the response of individuals to different drugs.

Such studies over time, when coupled with

advances in protein technologies, will provide the

extensive and diverse data-structures and the

profound understanding of cell biology, required

for a truly predictive medicine.

Corresponding technologies for monitoring

changes in protein abundance are not available, but

the field of proteomics is active and growing rapidly

[3,4,27–29]. Proteome technologies are important

because most current drug targets are proteins, but

also because of the variable and unreliable correlation

between gene and protein expression, and in the

post-translational protein modifications [30] that

are responsible for realizing the signaling and

information processing that regulate cell behavior.

A particularly relevant example of the latter is

modification of Ras by the addition of farnesyl

hydrocarbon. It is well known that hyperactivity of

the ras gene and consequent activity of the Ras

pathway [15] is implicated in several cancers,

perhaps the best studied being colorectal cancer.

This suggests farnesyl transferase inhibitors as a

lead therapeutic; indeed several are in clinical trials.

More generally, because other proteins in the Ras

pathway – for example mitogen activated protein

kinase and mitogen activated protein kinase kinase–

are also post-translationally modified, we can

reasonably expect an effective proteomics strategy

to multiply initial leads by many fold.

Identification of natural ligands

Once a protein is deemed to be a drug target, its

biological ligand logically becomes a drug candidate.

The availability of all full-length cDNAs in the human

genome has made it possible for three proteomic

methods to be developed to identify binding partners

[27]. They are briefly described below.

Mass spectrometry
Mass spectrometry can be used to detect the ligand

directly. The receptor molecule is first immobilized

on a bead and then treated with cell lysate. After the

nonspecific binders are washed away, the complex is

eluted. Proteolysis of the purified complex leads to

peptide fragments, whose masses can be determined

precisely using mass spectrometry [31]. Knowing

the masses of the proteolysis fragments is usually

not sufficient to identify the ligand. However, the

theoretical fragmentation spectra of all possible

proteins can be compared with the observed

spectrum to identify the mostly probable sequence

[32]. The sensitivity of mass spectrometry allows

this method to detect multi-component complexes

such as the yeast nuclear-pore complex [33], the

chloroplast of pea [34] and the interchromatin

granule cluster [35].

Yeast two-hybrid system
A high-throughput biological alternative to the above

method is the yeast two-hybrid system, which takes

advantage of our knowledge of transcription

machinery. The method involves fusions in two

different yeast strains. In one strain a reporter gene

is fused to the DNA binding domain of GAL4 (a

protein that is a transcriptional activator) and in the

other a cDNA library is fused to the GAL4 activation

domain. When the two strains are mated, the reporter

gene will be expressed only when the two GAL4

domains are in close proximity. The mated strains

are grown under conditions that require the protein

product of the reporter gene, and the surviving yeast

cells are harvested and the ligand sequence

uncovered by sequencing the inserts. This method

can achieve very high throughput. Each of the GAL4

domains can be cloned with a cDNA library to create

a protein–protein interaction map of the cell [36–39].

Display technologies
A third experimental approach to the identification

of natural ligands is based on display technologies

[40–42]. The traditional use of display technologies

for in vitro selection is discussed in the next section.

For in vitro selection, the display library is composed

of combinatorially generated mutants of the molecule

to be optimized. For identifying natural ligands

however, the entire proteome is used to construct the

display library.

The Darwinian theme in vitro

Display technologies are a family of experimental

methods that permit combinatorial generation of

diversity followed by selection and amplification of

those molecules with the desired property; for

example, tight binding to a receptor. One of the most

important characteristics of display technologies is

the ability to associate every protein with its genetic

material (RNA or DNA). The protein is the ‘displayed

entity’ of which function can be screened for. Although

amino acid sequences of low abundance proteins

cannot be readily determined, there are many high-

throughput techniques for DNA sequencing and

amplification. Thus, ‘linking’every protein molecule

to its oligonucleotide allows for the rapid ‘decoding’

of desirable proteins once they have been selected

from the library. Two other important features of

display technologies include the diversity and quality

of the library and the screening strategy. The

randomization and selection process can be iterated

many rounds, accelerating the evolutionary process

by nearly a billionfold.

The interplay between proteins and their genes

can take on many forms, leading to different kinds of

display technologies. Bacteriophage-based methods

were the first to be developed, and remain the most

widely used [43,44]. The oligonucleotide encoding the

target protein is fused with the gene of a phage coat

protein. By fusing oligonucleotides containing
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random mutations with the phage gene, a library of

phages each carrying a distinct peptide sequence as

part of its coat protein can be produced. Thus the

target protein is linked to its DNA through a phage

particle. The phage library is added to a dish coated

with the receptor molecule and unbound phages are

washed away. Binding phages are harvested,

amplified and sequenced to uncover the mutations

that cause the improved binding. Ribosomal display

involves the direct attachment of the target protein

to its mRNA molecule through ribosome [45]. The

RNA–peptide fusion technique covalently bonds a

protein to its mRNA [46]. Other examples include

flagellum display [47], yeast display [48] and

mammalian cell-based display [49]. Several recent

reviews provide excellent summaries of the

different formats of display technologies as well as

their strengths and weaknesses [44, 50–52].

There are practical limits to the size of display

libraries – phage and cell-based displays are unable

to handle more than 1011 library members and

cell-free ribosomal displays can handle no more than

1014. Direct synthesis of random oligonucleotides is

easy to do but it is not the most efficient way to

search the sequence space. Complete randomization

of 24 nucleotide positions leads to 424 distinct library

members, or a 1014 library size. This only

corresponds to eight amino acid positions. Of course,

redundant codons and stop codons can be eliminated.

This is achieved by mixing 20 presynthesized

trinucleotide phosphoramidites [53], each

corresponding to a different amino acid. Cho et al.

used mRNA display to filter out frame shifts and stop

codons in the randomized region prior to ribosomal

display [54]. At perfect accuracy, the theoretical limit

of library size thus corresponds to the complete

randomization of 11 amino acid positions, which is a

very small number compared with the average

protein size (~150 amino acids); even binding sites

typically contain 20–40 residues.

It is apparent from the above simple analysis that

the library must be designed strategically. One option

is to focus on positions of the molecule that are likely

to improve functionality, such as at the binding site.

Three-dimensional structural information can

frequently guide the design. This is the case for

antibodies and T-cell receptors, in which the binding

site of six loops is clearly defined. The technique has

produced an impressive array of antibodies whose

the affinities for antigen far exceed those observed

in nature [43].

Sometimes it is not obvious from the 3D structure

which positions of the molecule are important for its

function. Moreover, positions far away from the

binding site can affect the function allosterically, or

simply affect the stability of the protein. The

extreme approach is to introduce random mutations

throughout the gene using, for example, error-prone

PCR or an Escherichia coli strain lacking DNA

repair mechanisms (see [55] for different ways of

generating sequence variety). Although the coverage

on the sequence space is extremely low and most of

the time unviable mutants are produced, it is a

worthwhile avenue to explore when not much

functional information is available. For example, it

has been very difficult to display T-cell receptors,

possibly owing to their low solubility or low

stability. Kieke et al. successfully obtained T-cell

receptor mutants that could be displayed on the

surface of yeast from a random library produced

using an E. coli mutator strain [56]. The library had

only 6 × 107 members.

Stemmer has invented an ingenious technique for

generating sequence diversity, called gene shuffling

[57]. Related DNA sequences (e.g. all 20 copies of

interferon α in the human genome) are amplified

and randomly fragmented, and the fragments are

reassembled using DNA polymerase in a self-

priming fashion. The resulting chimeric molecules

are selected using a display technology. Desirable

progeny molecules are selected and can be bred

again, accumulating multiple beneficial mutations.

One important feature of gene shuffling is its

search strategy. Multi-parental recombination is

an effective way to search through the sequence

space, because the progenies that inherit beneficial

mutations from multiple parents can be produced

after crossover and can then be selected. Genetic

algorithms do precisely that in silico. Computer

simulations have shown that Genetic algorithms

can find the maximum in a complex landscape

rapidly [58].

Shuffling is an extremely efficient method for

exploring the genetic diversity of natural sequences.

The recent work by Chang et al. on evolving human

interferon α is revealing [59]. The three most potent

chimeras were more than 100-fold more active than

the best parent. They were derived from five parental

human genes but, strikingly, contained no random

point mutations. This indicates that there is

tremendous potential in the genetic diversity of

natural sequences. Evolution quickly eliminates

deleterious mutations, and would only tolerate

moderately inferior mutations if they were

compensated by beneficial ones. Thus, exploring

natural mutations is analogous to searching through

an infinitesimal sequence subspace that is largely

free of deleterious mutations; in the meantime,

beneficial mutations are enriched.

The challenge and promise of structural biology

Computational approaches to small-molecule drug

discovery use geometric recognition algorithms to

search small-molecule databases for structures

complementary to target molecules [60,61], with the

expectation that they will bind the target, and

thereby modulate its activity [62]. This is an

important start for both high-throughput screening

and rational drug design. Although small molecules

have an excellent track record for targeting enzymes

TRENDS in Biotechnology  Vol.20 No.1  January 2002

http://tibtech.trends.com

32 Review



and ion channels, they are not as effective as

proteins in blocking interactions between large

macromolecules, such as occur in Ras or Src

pathways. Also, non-biological small molecules

tend to be substantially more toxic than human

proteins. Proteins thus represent a growing class of

therapeutic agents, in spite of difficulties related to

their pharmacokinetic properties [63].

Protein–protein docking in the context of natural

ligand identification involves searching a structural

database by calculating the most stable complex that

can form between each protein in the database and

the potential target [64,65]. Predicting the stability

of a pair is difficult partly because of the requirement

for a rapidly evaluatable free-energy function with

correctly balanced components (solvation,

electrostatics, van der Waals or steric, and entropic

effects), and partly because the free energy must be

evaluated, for each pair of structures, over a large

number of conformations. Including flexibility in

surface structure means at a minimum allowing

surface side-chain flexibility. Surface side-chains in

the free molecules are likely to be in motion, rather

than in a single dominant conformation. When the

complex forms, those side-chains in the interface

lock into a single favorable conformation.

Consequently, not only must the rigid body rotational

degrees of freedom of the molecules be searched but

the side-chain conformations that provide the best

interaction must also be found.

Early approaches used geometric criteria (steric)

to match receptor and ligand starting from the bound

conformation, and most of them assumed the location

of the receptor binding site to be known. Recent

developments attempt to dock unbound molecules,

of which surface side-chains are not optimized for

complex formation. Free energy functions that take

account of solvation and electrostatics are now

available [66,67], and more recently binding free

energy functions taking into account solvation,

electrostatics and entropy have been developed and

validated [68–72].

Knowing the binding site of a molecule can

substantially improve the performance of docking

algorithms [73]. The finding that different ligands

can bind to the same site on the receptor indicates

that binding sites possess features that predispose

them to ligand binding. For example, four natural

proteins – protein A, protein G, neonatal Fc

receptor and rheumatoid factor – all bind to the

hinge region between the C
H
2 and C

H
3 domains on

human immunoglobulin G. Random peptides also

preferably bind to the same site [74]. Algorithms

that predict binding sites can be based on structure

[75,76] or sequence [77]. Experimental approaches

have been developed to map binding sites by solving

receptor structures in organic solvents [78,79].

Algorithms that do not assume known binding

sites are also under development [80–83]. Notably,

Fast Fourier Transform (FFT)-based methods,

which search the entire 6D rotational and

translational space of the ligand [73,80,84], perform

relatively well in blind trials [85,86]. Gabb et al.

applied a FFT algorithm with a steric-electrostatic-

combined target function to ten unbound complexes,

and ranked tens of near-correct structures in the

top 4000 without knowing the binding site. Chen

and Weng further developed the FFT algorithm with

a target function that is tolerant to conformation

changes. They performed a comprehensive study on

28 distinct protein–protein complexes. They ranked

near-native ligand orientations in the top 2000

choices for 25 complexes. For three systems, their

algorithm could identify the correct complex

structure unambiguously.

Although there has been substantial progress in

speed, current methods still require of the order of

hours to dock a pair of proteins with a full 6D search,

even with surface side-chain flexibility considered in

an implicit way and with a simplified target function.

As a result, all methods generate large numbers of

false-positive structures, and thus, post-processing

remains [66,69,87,88].

The computer power now available to relatively

small research labs and the accessibility of Gig-Byte

internal memory will continue to drive and

accelerate progress in the foreseeable future.

Individual labs now can afford dedicated Linux

clusters with hundreds of nodes. Such clusters will

enable the implementation of more complete target

functions and the improved treatment of side-chain

flexibility. The further development of empirical

binding free energy functions will benefit from

experimentally determined protein complex

structures produced by structural genomics

initiatives [89]. Very soon, the time to dock two

proteins will be less than one hour. We can then

expect that with 200 central processing units, an

entire structural database with 30 000 members will

be searched in less than one week. As computer

speeds continue to increase and algorithms continue

to improve, the time will continue to decrease, even

allowing for increasing numbers of structures.

Protein design in silico

One of the goals of protein design is to achieve

improved stability for a monomeric protein [90–92].

Thus, for example, Dahiyat and Mayo [93] began

with the backbone of a 28-residue zinc finger and

computationally screened 1027 sequences to find

candidates with high stability. In particular they

found computationally, and verified experimentally,

compact structures that were more stable than the

native zinc finger, and with no appreciable sequence

similarity to known zinc fingers. More recently,

Malakauskas and Mayo [94] reported a

hyperthermophilic variant of the β1 domain of

protein G, which has a melting temperature in

excess of 100°C, maintains the fold and retains a

significant level of binding to human IgG. The two
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most important features of their method are the

isomeric state approximation for side-chains

(rotamers), and the implementation of the

Dead-End Elimination theorem to efficiently

search through the sequence space [95]. The success

of Mayo’s team has begun to stimulate additional

research this area [96–100].

The same design principles used to increase the

stability of a monomer can be applied to increase the

stability and specificity of complexes. This problem is

simpler than docking because the goal is to achieve

improved stability to meet some design specification,

and not necessarily to achieve the most stable

complex. One would begin with the crystal structure

of a complex that has low affinity for the ligand, and

search for those sequences of the ligand that

increases some combination of affinity and

specificity. The design problem here requires

searching through a vast sequence space, composed

of all positions at the binding site. Compared with

display technologies, which are limited to libraries

with 1014 members, computational design can

explore a much larger sequence space. Recent work

by Looger and Hellinga [100] examined 2 ×1076

sequences in two days, distributed over eight

700 MHz Pentium III processors.

An example related to our own interests is the

design of high affinity T-cell receptors for peptide –

major histocompatibility complex (MHC) –

complexes. The immune system is triggered when

an infected cell displays on its surface, peptide

fragments from the infective agent in association

with host molecules encoded in the MHC. The

peptide–MHC complex is recognized as foreign by

cytotoxic T cells, which bind to and destroy the

infected cell. T-cell receptors typically bind

peptide–MHC complexes with low affinities, in the

range of 10−5 M, relying on ancillary interactions

after specificity is established, to increase stability

[101,102]. Because the affinity of the native

complex is low, and because this is an

antigen–antibody-like system (which can achieve

picomolar binding affinity [103,104]), it would be

reasonable to expect to find sequences that increase

the affinity by several orders of magnitude. This

project is ongoing, but when an automated scheme

is finally developed it could have substantial

diagnostic and therapeutic applications.
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