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Abstract

The density matrix renormalisation group (DMRG) method is a powerful computational technique for calculating the electronic and
geometrical structures of one-dimensional conjugated polymers. First, we solve the Pariser-Parr-Pople-Peierls model for trans-polyene
oligomers. We investigate the energies and solitonic structures. Next, we solve the Pariser-Parr-Pople model for the light emitting pheny!
polymers, and ascertain the nature of the excited states. Finally, we discuss how the DMRG method can be extended to ZINDO and ab initio

Hamiltonians, and to electron-phonon problems.
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1. Introduction

Conjugated polymers exhibit a wealth of fascinating low
energy excitations. These excitations arise from the inter-
play of electron-clectron interactions and electron-lattice
coupling. Most computational techniques are incapable of
dealing with electronic interactions accurately. However,
with the advent of the density matrix renormalisation group
(DMRG) method [1], such problems are now amenable to
an essentially rigorous solution. The DMRG method is an
accurate truncation procedure for quantum systems. It
works particularly well in one-dimension, and is thus well
suited for studying the electronic and geometrical structures
of conjugated polymers. We illustrate the application of the
DMRG method to solutions of the Pariser-Parr-Pople-
Peierls (P-P-P-P) model of m-electrons for two conjugated
polymers: frans -polyacetylene and poly(p-phenylene).

2. trans-polyacetylene

Trans-polyacetylene has a particularly rich spectrum of
excited states: covalent spin-density wave states and ionic
charge-transfer states. We take as our model a parametrised
P-P-P-P model [2, 3]. We use the Hellmann-Feynman
theorem to iterate to the relaxed geometrical structures. -
PA pocesses C, symmetry while the P-P-P-P model

pocesses particle-hole and spin-flip symmetrics. We use
these symmetries to target the low-lying states.

! Corresponding author. W.Barford@sheffield.ac.uk

Fig. 1 shows the vertical and relaxed (0-0) transition
energies of the lowest lying odd parity triplet @’ B,) and
singlet (1'B,) states and the lowest even parity singlet
(2' A,) excitation. We note that the 1°B, and 2'4, states
undergo considerable lattice relaxation, whereas the 1'B,
state weakly relaxes. The relaxed dipole-forbidden 2'A,

state lies below the dipole allowed 1'B, state, thus
explaining why #-PA is not electroluminescent.
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Fig. 1. Vertical (solid) and relaxed (open) transition energies

for the 1B, (diamonds), 1'B, (circles) and 21Ag (squares)

states.
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The experimental oligomer results lie very close to the
calculated values. The discrepancy of 0.3 ¢V for the 1'B,

state is explained by polarisation effects [4]. However, the
long chain extrapolation shows considerable deviations
from the thin film #-PA result of 1.0 ¢V and 2.0 eV for the

2'A, and 1'B, states, respectively. We conjecture that this

is partially explained by our adiabatic treatment of the
lattice (sce § 4).

The ground state dimerisation and solitonic structures are
shown in Fig. 2. The triplet state illustrates the soliton-
antisoliton structure expected from the non-interacting

Huckel-Peierls model. However, the 2' A, state exhibits a
4-soliton structure, indicating its triplet-triplet character [5].
The 1' B, exciton forms a polaronic distortion of the lattice.
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Fig. 2. Solitonic structures for the ground state (triangles)
and the excited states (same symbols as Fig. 1).

3. Poly(para-phenylene)

The phenyl based semiconducting polymers have received
considerable attention because of their potential device uses.
Poly(para-phenylene) (PPP) pocesses Dy, symmetry. From
the perspective of a DMRG calculation, PPP is harder to
solve than #-PA, because the repeat unit has six carbon
atoms, and thus its Hilbert space has 2!2 states. This is far
too many states to augment at once with the system block.
To overcome this difficulty we perform in sifu optimisation.
That is, we construct a local density matrix for the phenyl
unit, and retain the optimal states (typically a few hundred).

Fig. 3 shows the transition energies of the low-lying states.
There is remarkably good agreement with experiment. The

1'B,, state is approximately 0.3 eV higher than
experimental values, due to the neglect of solvation, while
the 1' B}, state is very close to the weakly allowed transition
at43¢V.

We note that the 1 B;, state shows very little delocalisation,

as its energy is almost independent of conjugation length.
The more strongly allowed transverse transition at 5.2 eV is

ca. 06 eV below our prediction for the llB{u
state
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Fig. 3. The vertical transition energies for PPP. 13 By,

(crosses), 1'B;, (circles), 1'B;, (diamonds) and 1'B;,

(squares).

Fig.3 also shows the lowest-lying triplet state, and indicates
that the triplet-singlet gap is over 0.5 eV.

4. Further developments

It is desirable to extend the applicability of the DMRG
method from semi-empirical mw-models to INDO models,
and ultimately to ab initio Hamiltonians. Further, quantum
lattice fluctuations are expected to lead to corrections to the
adiabatic approximation in the long chain limit. To perform
these kind of calculations we need to perform in situ
optimisation of the local Hilbert space. Such optimised
Hilbert spaces are likely to be transferable, and would lead
to significant efficiencies in quantum chemistry
calculations.
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