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Abstract

This note presents a generalization of the small-signal ac transport description of systems with electronic and ionic charges. To be specific,
hole polarons and counterions in a conjugated polymer are considered. The derivation of the transmission line equivalent circuit is in principle
close to the one of Sah (1969–1970) for solid-state electronics. It is shown (i) that in non-equilibrium current generators have to be added
to the Barker/Brumleve/Buck circuit; (ii) in addition, traps for both the hole polarons and the ions are taken into account; (iii) the reduction
to the lf limit is discussed; (iv) the principle extension to a porous two-phase system is presented. q2000 Elsevier Science S.A. All
rights reserved.
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1. Introduction

The large number of publications on transmission line
equivalent circuits (TLECs) for the electrochemical impe-
dance of (non-porous) systems with electrons (or holes) and
ions as mobile charge carriers culminated recently in a paper
by Buck and Mundt [1] on finite transmission lines of the
Barker/Brumleve/Buck type for exact representations of
transport by the Nernst–Planck equations for each charge
carrier. Simplified treatments are given, e.g., in Refs. [2–4].
Actually, the transmission line equivalent circuit description
of the transport in such systems has been developed about 30
years ago by Sah [5–7] for solid-state electronics (here elec-
trons and holes are the carriers). Most important for obtaining
a complete description is to carry out a careful small-signal
analysis of the Poisson and continuity equations. In contrast,
in Ref. [1] and in the previous publications on electrochem-
ical systems, the current generators derived in Ref. [7] for
non-equilibrium conditions are missing. Furthermore, there
is, e.g., in conjugated polymers clear evidence for the exis-
tence of traps for the polarons [8,9]. In a disordered system
one should also expect that energetically strongly favored
sites will occur causing trapping/detrapping of counterions.

Therefore, in this note a generalization of the ac small-
signal description and the corresponding TLEC for systems
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with electronic and ionic mobile charge carriers are presented
and discussed. In this first step non-equilibrium conditions
and traps for both types of charge carrier are taken into
account. Depending on the experimental conditions, different
boundary conditions have to be used at both ends of the
transmission line. Further processes will be taken intoaccount
in a subsequent publication. The analysis applies to systems
with two types of charge carriers obeying non-degenerate
statistics and Einstein relations. These are the assumptions
made, e.g., by Vorotyntsev et al. [4] to describe transport in
conducting polymers. Of course, especially electrochemi-
cally deposited polymers are porous, as also assumed in for-
mer publications of the author [10–12]. Modifications
needed to describe the two-phase system will be discussed
shortly.

2. Basic assumptions and equations

A system with positive (p) and negative (c) mobile
charges is considered. As an example, in a conducting poly-
mer one has hole polarons and stable counterions. The con-
centrations of the two species are cp and cc, respectively.
Under the same conditions as considered in Ref. [1], the two
diffusion coefficients Dp and Dc are related to the mobilities
mp and mc by the simple non-degenerate Einstein relations
mpsDp(F/RT) and mcsDc(F/RT), respectively. F and RT
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have their usual meaning. The electrical current densities (in
A cmy2) are then given as in [1] by the drift and the diffusion
currents, or they are completely driven by the gradients of
the respective electrochemical potentials, which are here
expressed in units of V as fFp and fFc (quasi-Fermipotentials
in the notation of solid-state electronics). Thus, the current
densities are given by

™
j ss (y=f)qD F(y=c )ss (y=f ) (1)p p p p p Fp

™
j ss (y=f)yD F(y=c )ss (y=s ) (2)c c c c c Fc

where the electric field sy=f is connected with the elec-
™
E

tric potential f caused by the deviation from neutrality and
by boundary conditions. The specific conductivities are
defined as usual by

2 2F F
s s D c , s s D c (3)p p p c c cRT RT

It should be emphasized that these equations do not depend
on the type of the transport mechanism 1. It is only assumed
that the transport is linear with the gradient of the quasi-Fermi
potential and, as mentioned, that non-degenerate orMaxwell–
Boltzmann statistics apply. Therefore, from Eqs. (1) and (2)
it follows also that one has

F cp(f yf)sln (4)Fp ž /RT cp0

F cc(fyf )sln (5)Fc ž /RT cc0

which is important for the derivation of the small-signalequa-
tions. Eq. (4) is valid for polarons in a conducting polymer
[13] and Eq. (5) holds for stable counterions due to the
existence of the membrane potential. The reference concen-
trations cp0 and cc0 are connected with the choice of the zero
for the scale of the common electric potential f. The transport
is then determined by the two continuity equations and by
the Maxwell equation for the displacement field

s´´0(y=f), or the Poisson equation for the electric
™
D
potential f:

=́ ´ (y=f)sF(c yc )qF(c yc ) (6)0 p c td ta

≠
=s (y=f )syF c yFU (7)p Fp p p

≠t

≠
=s (y=f )sqF c qFU (8)c Fc c c

≠t

Here, in addition to the transport description common in
electrochemistry [1] possible traps for both kinds of carriers
have been taken into account. The concentrations of posi-
tively and negatively charged traps are denoted by ctd and cta,
respectively, and Up and Uc are the respective net trapping

1 Especially in the case of hopping, the macroscopic diffusion coefficient
depends on the (equilibrium) concentration.

rates. The requirement of a vanishing divergence of the total

current density, = s0, leads with Eqs. (6)–(8)
P™ ™ ™

(j qj qD)p c

to the total trap rate equation:

d
(c yc )sU yU (9)td ta p cdt

In general, the system of Eqs. (6)–(8), together with the rate
equations for all traps, and with the appropriate boundary
conditions can be solved only numerically even in the one-
dimensional case.

3. Small-signal equations and the equivalent circuit
model

Eqs. (6)–(9) with Eq. (3) contain as variables the electric
potential, two electrochemical potentials which areconnected
to the concentrations by Eqs. (4) and (5), and the trap con-
centrations. To obtain the small-signal ac equations in the
one-dimensional case each of these quantities is expressed as
AsAs(x)qa(x) exp(ivt) with the dc steady-state solution
As(x) and a complex small-signal amplitude a(x). The small-
signal amplitudes for fFp, fFc and f are denoted in the fol-
lowing by wFp, wFc and w, respectively. In contrast to the
small-signal analysis by Sah [7] the ac case is considered
here. Furthermore, here the use of an additional quasi-Fermi
potential for the traps is avoided. Both lead to a more con-
venient formulation. In the following only traps for both types
of carriers are taken into account but the inclusion of the
mutual polaron-counterion capture and release (which is in
principle of the Langevin type) is postponed to later work.
Linearization of the system of equations, including the trap
rate equations, leads to

d d Gtp
´´ y w s C q (w yw)0 p Fpž / ž /dx dx ivq1/ttp (10)

Gtcq C q (w yw)c Fcž /ivq1/ttc

d d
s y w qG (w yw)p Fp p Fpž /µ ∂dx dx (11)

Gtpsyiv C q (w yw)p Fpž /ivq1/ttp

d d
s y w yG (w yw)c Fc c Fcž /µ ∂dx dx (12)

Gtcsyiv C q (w yw)c Fcž /ivq1/ttc

The conductances, capacitances and relaxation times in these
equations are defined in Table 1 (there the quantities andsKp

are the capture rates of the traps under steady-state con-sKc

ditions and Gp and Gc are the emission rates). It should be
mentioned that all parameters in these equations are deter-
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Table 1
Definition of the parameters of the small-signal ac Eqs. (10)–(12) and of the corresponding equivalent circuit depicted in Fig. 1

Specific conductivity sps
2F sD cp pRT

scs
2F sD cc cRT

S cmy1

Dielectric constant ´´0 F cmy1

Current generator conductance Gps
F sjpRT

Gcs
F sjcRT

S cmy2

Charging capacitance Cps
2F scpRT

Ccs
2F sccRT

F cmy3

Trap conductance Gtps
2F s sK cp tpRT

Gtcs
2F s sK cc tcRT

S cmy3

Trap relaxation time ttps( qGp)
y1sKp ttcs( qGc)

y1sKc s

Trap capacitance CtpsttpGtp CtcsttcGtc F cmy3

Fig. 1. The transmission line equivalent circuit. In addition to the established
electrochemical model [1] it contains trap conductances (Gtp and Gtc) and
capacitances (Ctp and Ctc) and, in the non-equilibrium steady-state case,
also the current generators (Gp(wFpyw) and yGc(wFcyw)). In the low-
frequency limit the displacement current (‘Poisson string’) disappears.

mined in general by the steady-state solutions of the general
Eqs. (6)–(8).

The capacitances Cp and Cc have been discussed exten-
sively in previous work [1–3]. The coupling of the system
of equations (apart from traps and current generators) is
expressed mainly by the following relations of the parameters
with the dielectric relaxation times:

´´ ´´0 0
t s , t s (13)p c

s sp c

the diffusion coefficients:

s sp cD s , D s (14)p cC Cp c

and the screening or diffusion lengths:
1/2

´´ 0 1/2s(D t ) sLp p pž /C p

1/2
´´ 0 1/2s(D t ) sL (15)c c cž /C c

As seen from Eqs. (10)–(12) the traps give essentially addi-
tive complex contributions to the capacitances Cp and Cc

modifying in this way the diffusion coefficients and the dif-
fusion lengths. Further characteristic quantities do occur for
non-zero values of Gp and Gc.

The contributions Gp(wFpyw) and yGc(wFcyw) in Eqs.
(11) and (12) are current generators which are well known
in solid-state electronics [7]. As seen from the definitions
for the conductances Gp and Gc in Table 1 they are independ-
ent from the existence of the traps. They result from the small-
signal expansion and they occur only if one has steady-state
conduction currents and/or . They have been overlookeds sj jc p

in previous electrochemical transmission lines, probably
because one does not normally have steady-state currents in
electrochemical systems. But they are possible, at least in
membrane systems. Thus, in a system (electrolyteNfilm of

conducting polymerNelectrolyte) there can be a steady-state
current of counterions.

Due to the formulation of Eqs. (10)–(12) in terms of
conductances and capacitances one can represent them
directly by an equivalent circuit. The basic element of the
resulting transmission line (for a sufficiently thin slab of
thickness Dx) for the two conduction currents and the dis-
placement current (denoted as ‘Poisson string’ in [1]) is
shown in Fig. 1. In addition to the model considered so far
as the general model (in the case of two types of mobile
charge carriers, see Fig. 1(b) in Ref. [1]) one has now at
first the contributions from the traps with their respective
conductances (Gtp and Gtc) and capacitances (Ctp and Ctc)
for both types of carriers. Also, independently from the exis-
tence of traps, for situations with non-zero steady-state con-
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duction currents ( and/or ), current generators do occurs sj jp c

which are determined by their conductances (Gp and Gc).

4. The low-frequency limit

For zero steady-state current and without traps the low-
frequency (lf) limit has been compared in detail with the full
solution in Ref. [1]. The general equivalent circuit is reduced
in the lf limit by omitting the ‘Poisson string’. Formally this
is obtained from the roots of the characteristic equation of the
system of Eqs. (10)–(12). They give the possible complex
wavelengths li (is1, .., 4) for special solutions proportional
to exp(x/l). For low frequencies, vtp<1, vtc<1, one
obtains

2 2L L 1 1p c2l s q1,2 2 2ž /iv(t qt ) L Lp c p c (16)
U1 C qC Dp cs s

iv(r qr ) C C ivp c p c

1 1 1 1
s q y (17)2 2 2 2ž /l L L l3,4 p c 1,2

with the ambipolar diffusion coefficient (for the reformula-
tions see Eqs. (13)–(15)):

s sc qcp cUD s (18)s sc cp cq
D Dc p

Since the solutions (Eq. (17)) decay (increase) exponen-
tially in a thick layer (compared to Lp, Lc) the solutions (Eq.
(16)) dominate. The second equation in Eq. (16) gives
immediately the connection with the reduced equivalent cir-
cuit. As seen from Eqs. (10)–(12) and Table 1 the trap
influence is included by simply replacing the capacitances in
Eq. (16) by

C Ctp tcC ™ C q , C ™ C q (19)p p c cž / ž /1qivt 1qivttp tc

Therefore, if the trap relaxation times are smaller than the
dielectric relaxation times, the trap capacitances are already
included in the lf limit; in the reverse case, the trap capaci-
tances are switched on only for iv< , . This switchingy1 y1t ttp tc

of one kind of trap, according to trap kinetics, will be observ-
able if the equilibrium electrochemical potential is near to the
corresponding trap level.

5. Porosity and double-layer capacity

In the case of conducting polymers, porosity can be impor-
tant but it depends strongly on the preparation. Since the basis
work of de Levie [14,15] porous systems are usually
described by two-phase models. In such models, at any posi-

tion averaged quantities of both phases are supposed to exist.
This requires an averaging over regions large compared to
the pore dimensions [10,16]. Then, the concentrations are
modified by the respective volume fractions and one has to
use effective conductivities [16,17]. Variables are then the
averages , , and of course only one averaged electrical¯ ¯w wFp Fc

potential . With the areal double-layer capacitance Cdl andw̄

with the specific pore area S (cm2 cmy3) one has the double-
layer capacitance per volume CdlS. Averaging over regions
large compared to the pore dimensions leads to a zero net
double-layer charge in the Poisson equation (Eq. (10)).
However, in the (small-signal) continuity Eqs. (11) and
(12), double-layer charging leads to contributions
.CdlS( y ) in the right-hand side of these equations.¯ ¯w wFp Fc

In the TLEC shown in Fig. 1 this leads to the additional
capacitance CdlS connecting directly the two conduction cur-
rents. For an inhomogeneously oxidized polymer layer a dis-
tributed charge-transfer resistance with hindrance [10] by
diffusion also has to be taken into account.

6. Conclusions

In this note transmission line equivalent circuits often used
in solid-state electrochemistry have been extended. At first,
under steady-state conditions additional current generators
do occur and, secondly, traps for the different types of carriers
have been taken into account. Especially the trap influence is
discussed in the lf limit. The generalization for more than two
types of carriers is trivial. The extension to a two-phase
description is also given. For a concrete system, processes at
the interfaces have to be added as boundary conditions.

In principle, the solution of the whole system of equations
is only possible numerically and, indeed, the transmission
line model is nothing more than a discretization of the small-
signal ac equations. Since, in general, the parameters (con-
ductances, capacitances, conductivities, time constants)
depend on the inhomogeneous steady-state solution, the prac-
tical importance of such transmission lines is limited insofar
as the small-signal ac solutions can be obtained from the
steady-state solutions with an S3A (small-signal sinoidal
analysis) method. However, the TLEC is of principal impor-
tance as it allows us to derive lumped equivalent circuits for
special conditions. This approach has not yet been developed
in connection with electrochemical applications.
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