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Abstract

This note presents a generalization of the small-signal ac transport description of systems with electronic and ionic charges. To be specific,
hole polarons and counterionsin aconjugated polymer are considered. The derivation of the transmission line equivalent circuitisinprinciple
close to the one of Sah (1969-1970) for solid-state electronics. It is shown (i) that in non-equilibrium current generators have to be added
to the Barker/Brumleve/Buck circuit; (ii) in addition, trapsfor both the hole polarons and the ions are taken into account; (iii) thereduction

to the If limit is discussed; (iv) the principle extension to a porous two-phase system is presented.
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1. Introduction

The large number of publications on transmission line
equivalent circuits (TLECs) for the electrochemical impe-
danceof (non-porous) systemswith electrons (or holes) and
ions as mobile charge carriers culminated recently in a paper
by Buck and Mundt [1] on finite transmission lines of the
Barker/Brumleve/Buck type for exact representations of
transport by the Nernst—Planck eguations for each charge
carrier. Simplified treatments are given, e.g., in Refs. [2-4].
Actually, the transmission line equivalent circuit description
of thetransport in such systems has been devel oped about 30
yearsago by Sah [5-7] for solid-state electronics (hereelec-
tronsand holesarethecarriers) . Most important for obtaining
a complete description is to carry out a careful small-signal
analysis of the Poisson and continuity equations. In contrast,
in Ref. [1] and in the previous publications on electrochem-
ical systems, the current generators derived in Ref. [7] for
non-equilibrium conditions are missing. Furthermore, there
is, eg., in conjugated polymers clear evidence for the exis-
tence of traps for the polarons [8,9]. In adisordered system
one should also expect that energetically strongly favored
siteswill occur causing trapping/detrapping of counterions.

Therefore, in this note a generalization of the ac small-
signal description and the corresponding TLEC for systems
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with electronic and ionic mobile charge carriersare presented
and discussed. In this first step non-equilibrium conditions
and traps for both types of charge carrier are taken into
account. Depending on the experimental conditions, different
boundary conditions have to be used at both ends of the
transmissionline. Further processeswill betakeninto account
in a subsequent publication. The analysis applies to systems
with two types of charge carriers obeying non-degenerate
statistics and Einstein relations. These are the assumptions
made, e.g., by Vorotyntsev et a. [4] to describetransportin
conducting polymers. Of course, especialy electrochemi-
cally deposited polymers are porous, as also assumed in for-
mer publications of the author [10-12]. Modifications
needed to describe the two-phase system will be discussed
shortly.

2. Basic assumptionsand equations

A system with positive (p) and negative (c) mobile
chargesis considered. As an example, in aconducting poly-
mer one has hole polarons and stable counterions. The con-
centrations of the two species are ¢, and c,, respectively.
Under the same conditions as considered in Ref. [ 1], thetwo
diffusion coefficients D, and D, are related to the mobilities
Mp and p. by the simple non-degenerate Einstein relations
tp=Dy(F/RT) and u.=D.(F/RT), respectively. F and RT
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havetheir usual meaning. The electrical current densities (in
A cm™?) arethengivenasin [1] by thedrift andthediffusion
currents, or they are completely driven by the gradients of
the respective electrochemical potentials, which are here
expressed inunitsof V as ¢, and ¢, (quasi-Fermi potentials
in the notation of solid-state electronics). Thus, the current
densitiesare given by

Jom 0o (—V)+ Dy F(—Vep) = o (Vb ) (1)

Jom 0 o(—V)— D F(—Ve) =0 o(—Vor o) (2)

wherethe electric field E)= — V¢ isconnected with the elec-
tric potential ¢ caused by the deviation from neutrality and
by boundary conditions. The specific conductivities are
defined as usual by
2 FZ

op= EDpcp, .= E,DccC (3)
It should be emphasized that these equations do not depend
on the type of the transport mechanism *. It is only assumed
that the transport islinear with the gradient of thequasi-Fermi
potential and, asmentioned, that non-degenerateor M axwell—
Boltzmann statisticsapply. Therefore, fromEgs. (1) and (2)
it follows a so that one has

o —a=inl Lo
RT(¢Fp ) ln(cpo) (4)
F Ce
E“(d)_d)FC):ln(c_co) (5)

whichisimportant for the derivation of the small-signal equa-
tions. Eq. (4) isvalid for polarons in a conducting polymer
[13] and Eq. (5) holds for stable counterions due to the
existence of the membrane potential. The reference concen-
trations c,, and ¢, are connected with the choice of the zero
for the scal e of the common electric potential ¢. Thetransport
is then determined by the two continuity equations and by
the Maxwell equation for the displacement field
D=ego( —V¢), or the Poisson equation for the electric
potentia ¢:

Veeo(—Vd)=F(cy—c)+F(cig—Cra) (6)
d

Va'p(—quFp)=—F5cp—FUp @)

Vac(—V¢FC)=+F%CC+FUC (8)

Here, in addition to the transport description common in
electrochemistry [1] possibletrapsfor both kinds of carriers
have been taken into account. The concentrations of posi-
tively and negatively charged traps are denoted by ¢,q and .,
respectively, and U, and U, are the respective net trapping

1 Especially in the case of hopping, the macroscopic diffusion coefficient
depends on the (equilibrium) concentration.
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rates. The requirement of a vanishing divergence of the total

current density, V(/:+ jc_)+5)) =0, leads with Egs. (6)—(8)
to the total trap rate equation:

d
d_t(ctd_cta)=Up_Uc (9)

In general, the system of Egs. (6)—(8), together with therate
equations for al traps, and with the appropriate boundary
conditions can be solved only numerically even in the one-
dimensional case.

3. Small-signal equationsand the equivalent cir cuit
model

Egs. (6)—(9) with Eq. (3) contain asvariablestheelectric
potential, two el ectrochemical potential swhichareconnected
to the concentrations by Egs. (4) and (5), and the trap con-
centrations. To obtain the small-signal ac equations in the
one-dimensional case each of these quantitiesisexpressed as
A=A%(x) +a(x) exp(imt) with the dc steady-state solution
A°(x) and acomplex small-signal amplitudea(x). Thesmall-
signal amplitudes for ¢g,, ¢ and ¢ are denoted in the fol-
lowing by ¢, @r and ¢, respectively. In contrast to the
small-signal analysis by Sah [7] the ac case is considered
here. Furthermore, here the use of an additional quasi-Fermi
potential for the traps is avoided. Both lead to a more con-
venient formulation. Inthefollowing only trapsfor bothtypes
of carriers are taken into account but the inclusion of the
mutual polaron-counterion capture and release (whichisin
principle of the Langevin type) is postponed to later work.
Linearization of the system of equations, including the trap
rate equations, leadsto

d (_d }_ _Gp _
dxggo( dx¢)_(cp+iw+1/7'tp)(¢Fp ¢)
s —Ge (Prc— @)
Tlot1/n ) Y
3ol ~ L)+ ot
dr Op dx(PFp o\ Pp— @ (11)
Y e [
P iw+1/7, P
3ol - Lor]-Guter—e)
dx a4 d.X(PFC c\ @Prc ¢ (12)
= —j C+L ( — )
- iwt+1/7e Pre™ @

The conductances, capacitances and relaxation timesin these
equations are defined in Table 1 (there the quantities K7 and
K are the capture rates of the traps under steady-state con-
ditions and I, and I, are the emission rates). It should be
mentioned that all parameters in these equations are deter-

(10)
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Tablel

Definition of the parameters of the small-signal ac Egs. (10)—(12) and of the corresponding equivalent circuit depicted in Fig. 1

FZ

Specific conductivity op= ﬁDpcf,
Dielectric constant £&g
r )
Current generator conductance G,= RTP
2
Charging capacitance Co=—cp
RT
2
Trap conductance Gp= I Kic

Trap relaxation time Tp=(K5+1,) "

Trap capacitance Cip=1pGip

T.= ﬁDJi Scm™?

Fcm™?
F

G.= R—Tji Scm—2
2

C.= R—Tci Fem™3
2

Gic= E,K(S:Ctsc Scm™?

Te=(Ke+1o) ™t S
Cic=1tGrc Fem™—2

mined in genera by the steady-state solutions of the general
Egs. (6)—(8).

The capacitances C, and C, have been discussed exten-
sively in previous work [1-3]. The coupling of the system
of equations (apart from traps and current generators) is
expressed mainly by thefollowing relationsof the parameters
with the dielectric relaxation times:

Tp=_9 TC:_ (13)

Dp=—=2, D,=-° (14)

and the screening or diffusion lengths:

1/2
EE
(&) ~sreet,

1/2
(i) ~(Dero) =L (15)
C.

Asseenfrom Egs. (10)—(12) thetraps give essentially addi-
tive complex contributions to the capacitances C, and C,
modifying in this way the diffusion coefficients and the dif-
fusion lengths. Further characteristic quantities do occur for
non-zero values of G, and G...

The contributions G, (¢, — ¢) and — Gc( @ — ¢) inEgs.
(11) and (12) are current generators which are well known
in solid-state electronics [7]. As seen from the definitions
for the conductances G, and G in Table 1 they areindepend-
ent from the existence of thetraps. They result fromthesmall-
signal expansion and they occur only if one has steady-state
conduction currents iz and/or j5. They have been overlooked
in previous electrochemical transmission lines, probably
because one does not normally have steady-state currentsin
electrochemical systems. But they are possible, at least in
membrane systems. Thus, in a system (electrolyte|film of
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conducting polymer | electrolyte) there can be a steady-state
current of counterions.

Due to the formulation of Egs. (10)—(12) in terms of
conductances and capacitances one can represent them
directly by an equivalent circuit. The basic element of the
resulting transmission line (for a sufficiently thin slab of
thickness Ax) for the two conduction currents and the dis-
placement current (denoted as ‘Poisson string’ in [1]) is
shown in Fig. 1. In addition to the model considered so far
as the general model (in the case of two types of mobile
charge carriers, see Fig. 1(b) in Ref. [1]) one has now at
first the contributions from the traps with their respective
conductances (Gy, and G,;) and capacitances (C,, and Cy,)
for both types of carriers. Also, independently from the exis-
tence of traps, for situations with non-zero steady-state con-

+ G, (Pg,- 9)
) /(PFp
Jp _ .. : ANN —
p,= o, %G
C,T ”
= C
o tp
jo —> It « [
€& é G
C.~ T “
-1 .
pc: G, (PF(, th
je— — I
-G (.- 9)

Fig. 1. Thetransmission lineequivalent circuit. In addition to the established
electrochemical model [1] it contains trap conductances (G, and G.) and
capacitances (Cy, and C,;) and, in the non-equilibrium steady-state case,
also the current generators (G,( @, — ¢) and — G.(@ec— ¢)). In the low-
frequency limit the displacement current (‘ Poisson string’ ) disappears.
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duction currents (j; and/or jg), current generators do occur
which are determined by their conductances (G, and G,).

4. Thelow-frequency limit

For zero steady-state current and without traps the low-
frequency (If) limit has been compared in detail with thefull
solutioninRef. [1]. Thegeneral equivalent circuitisreduced
in theIf limit by omitting the ‘ Poisson string’. Formally this
isobtained from the roots of the characteristic equation of the
system of Egs. (10)—(12). They give the possible complex
wavelengths \; (i=1, .., 4) for special solutionsproportional
to exp(x/A). For low frequencies, wr, <1, wr,<1, one
obtains

) szch 1 1
)\1,2=.7 —2+—2
lo(r,+7)\ Ly,  Le

B 1 Cp+C. D*
iw(ppt+p) CoCc iw
1 1 1 1
S =\5+=5|-5 (17)
A4 (sz ch) Als

with the ambipolar diffusion coefficient (for the reformula
tionssee Egs. (13)—(15)):

(16)

S S
cpteg

D*= (18)

s s
C s
A

D. D,

Since the solutions (Eq. (17)) decay (increase) exponen-
tially inathick layer (comparedtoL,, L;) the solutions (Eq.
(16)) dominate. The second equation in Eqg. (16) gives
immediately the connection with the reduced equivalent cir-
cuit. As seen from Egs. (10)—(12) and Table 1 the trap
influenceisincluded by simply replacing the capacitancesin

Eq. (16) by
i), CC_)(CC+ i) (19)

C Co+— -
p_)( P 1+iomn, I+iwT.

Therefore, if the trap relaxation times are smaller than the
dielectric relaxation times, the trap capacitances are aready
included in the If limit; in the reverse case, the trap capaci-
tancesareswitchedononly forio < r,', 7. . Thisswitching
of onekind of trap, according to trap kinetics, will be observ-
ableif the equilibrium electrochemical potential isnear to the
corresponding trap level.

5. Por osity and double-layer capacity

In the case of conducting polymers, porosity can beimpor-
tant but it depends strongly onthe preparation. Sincethebasis
work of de Levie [14,15] porous systems are usually
described by two-phase models. In such models, at any posi-
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tion averaged quantities of both phases are supposed to exist.
This requires an averaging over regions large compared to
the pore dimensions [10,16]. Then, the concentrations are
modified by the respective volume fractions and one has to
use effective conductivities [16,17]. Variables are then the
averages ¢r,, @rc, and of course only one averaged el ectrical
potential ¢. With the areal double-layer capacitance Cy and
with the specific porearea S (cm? cm~2) one hasthe double-
layer capacitance per volume CyS Averaging over regions
large compared to the pore dimensions leads to a zero net
double-layer charge in the Poisson equation (Eq. (10)).
However, in the (small-signal) continuity Egs. (11) and
(12), double-layer charging leads to contributions
F CaS(@rp— @rc) in the right-hand side of these equations.
In the TLEC shown in Fig. 1 this leads to the additional
capacitance Cy S connecting directly the two conduction cur-
rents. For an inhomogeneously oxidized polymer layer adis-
tributed charge-transfer resistance with hindrance [10] by
diffusion also has to be taken into account.

6. Conclusions

In this note transmission line equival ent circuitsoften used
in solid-state electrochemistry have been extended. At first,
under steady-state conditions additional current generators
do occur and, secondly, trapsfor thedifferent typesof carriers
have been taken into account. Especially thetrap influenceis
discussed inthelf limit. The generalization for morethantwo
types of carriers is trivial. The extension to a two-phase
description is also given. For aconcrete system, processes at
the interfaces have to be added as boundary conditions.

In principle, the solution of the whole system of equations
is only possible numerically and, indeed, the transmission
line model is nothing more than a discretization of the small-
signal ac equations. Since, in general, the parameters (con-
ductances, capacitances, conductivities, time constants)
depend on theinhomogeneous steady-state sol ution, theprac-
tical importance of such transmission linesis limited insofar
as the small-signal ac solutions can be obtained from the
steady-state solutions with an S*A (small-signal sinoidal
analysis) method. However, the TLEC isof principal impor-
tance asit allows us to derive lumped equivalent circuitsfor
special conditions. Thisapproach hasnot yet been devel oped
in connection with electrochemical applications.
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