Innovation and Integration in the Nanoelectronics Era #### **Sunlin Chou** Technology and Manufacturing Group Intel Corporation International Solid-State Circuits Conference February 2005 ### **Key Points** Moore's Law thriving after 40 years #### Moore's Law - 1965 #### Moore's Law - 2005 ### The IC Growth Cycle Technology advances Consumption grows - **Density** - Performance - Switching energy - Cost per function **Applications** - **Devices** - **Users** - Revenue # Silicon Scaling Still Improves Density, Performance, Power, Cost | | 130 nm | |-----------------------------|---------| | | Madison | | Cores/Threads | 1/1 | | Transistors | 0.41 | | L3 Cache | 6 | | Frequency | 1.5 | | Relative Performance | 1 | | Thermal Design Power | 130 | | | | | 90 nm | | |----------------|-----------| | <u>Monteci</u> | <u>to</u> | | 2/4 | | | 1.72 | Billion | | 24 | MByte | | >1.7 | GHz | | >1.5x | | | ~100 | Watt | ### **Key Points** - Moore's Law thriving after 40 years - Convergence drives IC industry growth ### Convergence Drives Growth ### Convergence Wireless Mobile PC ### % of Notebooks that have Wireless ### Convergence Data Phones and Traffic ### 2004: Data Phones Cross-over Voice New Cell Phone Sales by Feature Set Data Traffic: 56% Annual Growth thru 2006 Source: WebFeet Research rce: Goldman Sachs and Co., McKinsey & Company ## Convergence Digital Consumer Electronics The Great Crossover Digital Technologies Surpass Analog 95 '96 '97 '98 '99 '00 '01 '02 '03 '04 '05 '06 '07 '08 **Crossover Year** ### **Key Points** - Moore's Law thriving after 40 years - Convergence drives IC industry growth - Integrated platforms optimize user experience - Multi-core parallelism going mainstream ## Demand Growth Driven by Better User Experiences User Experience Security Virtualization Multitasking Manageability Ease of Use Battery Life Compactness Wireless Mobility Multimedia Networking Graphics Computing Memory Platforms Optimize User Experience **Innovate and Integrate** ### RMS Applications Growing Emerging workloads increase need for high performance parallel processing ### Performance and Power Efficiency Increase with Parallel Architecture *Average of SPECInt2000 and SPECFP2000 rates for Intel desktop processors vs initial Intel® Pentium® 4 Processor ### Multi-Core Parallelism Going Mainstream **Dual-Core Processor Plans (Intel)** Servers **Desktop** Mobile 90nm Montecito (2005) 90nm Smithfield (2005) 65nm Yonah (2005) 90nm Server Processor (2006) 65nm Desktop Processor (2006) #### **Key Points** - Moore's Law thriving after 40 years - Convergence drives IC industry growth - Integrated platforms optimize user experience - Multi-core parallelism going mainstream - Holistic solutions deliver power efficiency # Silicon Technology Changes to Increase Power Efficiency 1960's: Bipolar 1970's: PMOS, NMOS 1980's: CMOS 1990's: Voltage scaling ($P = CV^2f$) 2000's: Power efficient scaling/design ### Power Efficient 90nm Transistors with Strained Silicon Innovate and integrate for cost effective production ### Strained Silicon Improves Transistor Performance and/or Reduces Leakage ### Advances in Power Efficient Design ISSCC 2005 P10.1 "The Implementation of a 2-core Multi-Threaded ItaniumTM Family Processor" # Circuit Techniques Reduce Source Drain Leakage ### Sleep Transistor Reduces SRAM Leakage Power >3x SRAM leakage reduction on inactive blocks ### Sleep Transistors Reduce ALU Leakage #### **Key Points** - Moore's Law thriving after 40 years - Convergence drives IC industry growth - Integrated platforms optimize user experience - Multi-core parallelism going mainstream - Holistic solutions deliver power efficiency - Nanotechnology will extend IC advances - Lithography innovations remain vital ### Silicon Technology Reaches Nanoscale # Nanotechnology Hallmarks (For Nanoelectronics) - Structures measured in nanometers - -Less than 0.1-micron (100nm) - New processes, materials, device structures - Incrementally changing silicon technology base - Materials manipulated on atomic scale - -In one or more dimensions - Increasing use of self-assembly - Using chemical properties to form structures Nanotechnology innovations will extend silicon technology and Moore's Law ## Design Your Own Film with Atomic Layer Deposition (ALD) **Atomic level manipulation + Self-assembly** ## ALD Enables High-k Dielectric to Reduce Gate Leakage | 图 自主 主义 [6 | High-k vs. SiO ₂ | Benefit | |-------------------------|-----------------------------|--------------------| | Gate capacitance | 60% greater | Faster transistors | | Gate dielectric leakage | > 100x reduction | Lower power | Process integration is the key challenge # Nanostructures for the Next Decade (Transistor Research at Intel) Si Device Miniaturization Non-planar Tri-Gate Architecture Drain III-V Device Research Carbon Nanotube Transistor #### Benchmarking Nanotransistor Progress # Lithography Must Break Through to Shorter Wavelength (EUV* @ 13.5nm) # Lithography Must Break Through to Shorter Wavelength (EUV* @ 13.5nm) # EUV Lithography in Commercial Development **EUV Micro exposure tool (MET)** #### Integrated development in progress - Source power and lifetime - Defect free mask fabrication and handling - Optics lifetime - Resist performance #### **EUV Source Power Increased** Source: SEMATECH #### **EUV Mask Blank Defects Reduced** Source: SEMATECH ### **Key Points** - Moore's Law thriving after 40 years - Convergence drives IC industry growth - Integrated platforms optimize user experience - Multi-core parallelism going mainstream - Holistic solutions deliver power efficiency - Nanotechnology will extend IC advances - Lithography innovations remain vital - Moore's Law will outlive CMOS - Future rides on innovation and integration #### Moore's Law Will Outlive CMOS ### Innovation and Integration Will Sustain Moore's Law Innovation Integration Identify needs and create capabilities that drive growth \rightarrow Deliver platforms to optimize user experience Anticipate barriers and seek timely breakthroughs Integrate new materials, devices, processes Make strategic technology transitions Coordinate strategic shifts across industry #### **Key Points** - Moore's Law thriving after 40 years - Convergence drives IC industry growth - Integrated platforms optimize user experience - Multi-core parallelism going mainstream - Holistic solutions deliver power efficiency - Nanotechnology will extend IC advances - Lithography innovations remain vital - Moore's Law will outlive CMOS - Future rides on innovation and integration