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Limits on fundamental limits
to computation
Igor L. Markov1*

An indispensable part of our personal and working lives, computing has also become essential to industries and govern-
ments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in
integrated circuits over the past fifty years. Such Moore scaling now requires ever-increasing efforts, stimulating research
in alternative hardware and stirring controversy. To help evaluate emerging technologies and increase our understanding
of integrated-circuit scaling, here I review fundamental limits to computation in the areas of manufacturing, energy,
physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, I
recapitulate how some limits were circumvented, and compare loose and tight limits. Engineering difficulties encountered
by emerging technologies may indicate yet unknown limits.

E merging technologies for computing promise to outperform con-
ventional integrated circuits in computation bandwidth or speed,
power consumption, manufacturing cost, or form factor1,2. How-

ever, razor-sharp focus on any one nascent technology and its benefits some-
times neglects serious limitations or discounts ongoing improvements in
established approaches. To foster a richer context for evaluating emerg-
ing technologies, here I review limiting factors and the salient trends in
computing that determine what is achievable in principle and in practice.
Several fundamental limits remain substantially loose, possibly indicating
viable opportunities for emerging technologies. To clarify this uncertainty,
I examine the limits on fundamental limits.

Universal and general-purpose computers
If we view clocks and watches as early computers, it is easy to see the impor-
tance of long-running calculations that can be repeated with high accu-
racy by mass-produced devices. The significance of programmable digital
computers became clear at least 200 years ago, as illustrated by Jacquard
looms in textile manufacturing. However, the existence of universal com-
puters that can efficiently simulate (almost) all other computing devices—
analogue or digital—was only articulated in the 1930s by Church and Turing
(Turing excluded quantum physics when considering universality)3. Effi-
ciency was studied from a theoretical perspective at first, but strong demand
in military applications in the 1940s led Turing and von Neumann to develop
detailed hardware architectures for universal computers—Turing’s design
(Pilot ACE) was more efficient, but von Neumann’s was easier to program.
The stored-program architecture made universal computers practical in
the sense that a single computer design could be effective in many diverse
applications if supplied with appropriate software. Such practical univer-
sality thrives (1) in economies of scale in computer hardware and (2) among
extensive software stacks. Not surprisingly, the most sophisticated and com-
mercially successful computer designs and components, such as Intel and
IBM central processing units (CPUs), were based on the von Neumann par-
adigm. The numerous uses and large markets of general-purpose chips,
as well as the exact reproducibility of their results, justify the enormous
capital investment in the design, verification and manufacturing of leading-
edge integrated circuits. Today general-purpose CPUs power cloud server-
farms and displace specialized (but still universal) mainframe processors
in many supercomputers. Emerging universal computers based on field-
programmable gate-arrays and general-purpose graphics processing units

outperform CPUs in some cases, but their efficiencies remain complemen-
tary to those of CPUs. The success of deterministic general-purpose com-
puting is manifest in the convergence of diverse functionalities in portable,
inexpensive smartphones. After steady improvement, general-purpose com-
puting displaced entire industries (newspapers, photography, and so on)
and launched new applications (video conferencing, GPS navigation, online
shopping, networked entertainment, and so on)4. Application-specific inte-
grated circuits streamline input–output and networking, or optimize func-
tionalities previously performed by general-purpose hardware. They speed
up biomolecular simulation 100-fold5,6 and improve the efficiency of video
decoding 500-fold7, but they require design efforts with a keen understand-
ing of specific computations, impose high costs and financial risks, need mar-
kets where general-purpose computers lag behind, and often cannot adapt
to new algorithms. Recent techniques for customizable domain-specific
computing8 offer better tradeoffs, while many applications favour the com-
bination of general-purpose hardware and domain-specific software, includ-
ing specialized programming languages9,10 such as Erlang, which was used
to implement the popular Whatsapp instant messenger.

Limits as aids to evaluating emerging technologies
Without sufficient history, we cannot extrapolate scaling laws for emerg-
ing technologies, yet expectations run high. For example, new proposals
for analogue processors appear frequently (as illustrated by adiabatic quan-
tum computers), but fail to address concerns about analogue computing,
such as its limitations on scale, reliability, and long-running error-free com-
putation. General-purpose computers meet these requirements with digital
integrated circuits and now command the electronics market. In compar-
ison, quantum computers—both digital and analogue—hold promise only
in niche applications and do not offer faster general-purpose computing
because they are no faster for sorting and other specific tasks11–13. In exagger-
ating the engineering impact of quantum computers, the popular press has
missed this important point. But in scientific research, attempts to build
quantum computers may help in simulating quantum-chemical phenomena
and reveal new fundamental limits. The sections ‘Asymptotic space-time
limits’ and ‘Conclusions’ below discuss the limits on emerging technologies.

Technology extrapolation versus fundamental limits
The scaling of commercial computing hardware regularly runs into formi-
dable obstacles1,2, but near-term technological advances often circumvent
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them. The ITRS14 keeps track of such obstacles and possible solutions with
a focus on frequently revised consensus estimates. For example, consensus
estimates initially predicted 10-GHz CPUs for the 45-nm technology node15,
versus the 3–4-GHz range seen in practice. In 2004, the unrelated Quan-
tum Information Science and Technology Roadmap16 forecast 50 ‘digital’
physical qubits by 2012. Such optimism arose by assuming technological
solutions long before they were developed and validated, and by overlook-
ing important limits. The authors of refs 17 and 18 classify the limits to
devices and interconnects as fundamental, material, device, circuit, and
system limits. These categories define the rows of Table 1, and the columns
reflect the sections of this Review in which I examine the impact of specific
limits on feasible computing technologies, looking for ‘tight’ limits, which
obstruct the long-term improvement of key parameters.

Engineering obstacles
Engineering obstacles limit specific technologies and choices. For example,
a key bottleneck today is integrated circuit manufacture, which packs bil-
lions of transistors and wires in several square centimetres of silicon, with
astronomically low defect rates. Layers of material are deposited on silicon
and patterned with lasers, fabricating all circuit components simultaneously.
Precision optics and photochemical processes ensure accuracy.

Limits on manufacturing
No account of limits to computing is complete without the Abbe diffrac-
tion limit: light with wavelength l, traversing a medium with refractive
index g, and converging to a spot with angle h (perhaps focused by a lens)
creates a spot with diameter d 5 l/NA, where NA 5 gsinh is the numer-
ical aperture. NA reaches 1.4 for modern optics, so it would seem that
semiconductor manufacturing is limited to feature sizes of l/2.8. Hence,
argon-fluoride lasers with a wavelength of 193 nm should not support pho-
tolithographic manufacturing of transistors with 65-nm features. Yet these
lasers can support subwavelength lithography even for the 45-nm to 14-nm
technology nodes if asymmetric illumination and computational litho-
graphy are used19. In these techniques, one starts with optical masks that
look like the intended image, but when the image gets blurry, the masks
are altered by gently shifting the edges to improve the image, possibly
eventually giving up the semblance between the original mask and the
final image. Clearly, some limits are formulated to be broken! Ten years
ago, researchers demonstrated the patterning of nanomaterials by live
viruses20. Known virions exceed 20 nm in diameter, whereas subwavelength
lithography using a 193-nm ArF laser was recently extended to 14-nm semi-
conductor manufacturing14. Hence, viruses and microorganisms are no
longer at the forefront of semiconductor manufacturing. Extreme ultra-
violet (X-ray) lasers have been energy-limited, but are improving. Their
use requires changing the optics from refractive to reflective. Additional

progress in multiple patterning and directed self-assembly promises to
support photolithography beyond the 10-nm technology node.

Limits on individual interconnects
Despite the doubling of transistor density with Moore’s law21, semicon-
ductor integrated circuits would not work without fast and dense inter-
connects. Copper wires can be either fast or dense, but not both at the same
time—a smaller cross-section increases electrical resistance, while greater
height or width increase parasitic capacitance with neighbouring wires
(wire delay grows with the product of resistance and capacitance, RC). As
pointed out in 1995 by an Intel researcher, on-chip interconnect scaling
has become the real limiter of high-performance integrated circuits22. The
scaling of interconnect is also moderated by electron scattering against
rough edges of metallic wires18, which is inevitable with atomic-scale wires.
Hence, integrated circuit interconnect stacks have evolved15,23 from four
equal-pitch layers in 2000 to 16 layers with some wires up to 32 times
thicker than others (as in Fig. 3) including a large amount of dense (thin)
wiring and fast (thick) wires used for global on-chip communication (Fig. 3).
Aluminium and copper remain unrivalled for conventional interconnects
and can be combined in short wires98; carbon-nanotube and spintronic in-
terconnects are also evaluated in ref. 98. Photonic waveguides and radio
frequency links offer alternative integrated circuit interconnect24,25, but
still obey fundamental limits derived from Maxwell’s equations, such as
the maximum propagation speed of electromagnetic waves18. The num-
ber of input–output links can only grow with the perimeter or surface area
of a chip, whereas chip capacity grows with area or volume, respectively.

Limits on conventional transistors
Transistors are limited by their tiniest feature—the width of the gate
dielectric—which recently reached the size of several atoms (Fig. 1), creat-
ing problems: (1) a few missing atoms can alter transistor performance,
(2) manufacturing variation makes all the transistors slightly different
(Fig. 2), (3) electric current tends to leak through thin narrow dielectrics17.
Therefore, transistors are redesigned with wider dielectric layers26 that sur-
round a fin shape (Fig. 4). Such configurations improve the control of the
electric field, reduce current densities and leakage, and diminish process
variations. Each field effect transistor (FET) can use several fins, extend-
ing transistor scaling by several generations. Semiconductor manufacturers
adopted such FinFETs for upcoming technology nodes. Going a step fur-
ther, in tunnelling transistors27, a gate wraps around the channel to con-
trol the tunnelling rate.

Limits on design effort
In the 1980s, Mead and Conway formalized integrated circuit design using
a regular grid, enabling automated layout through algorithms. But the

Table 1 | Some of the known limits to computation
Limits Engineering Design and validation Energy, time Space, time Information, complexity

Fundamental Abbe (diffraction);
Amdahl; Gustafson

Error-correction and
dense codes; fault-
tolerance thresholds

Einstein (E 5 mc2);
Heisenberg (DEDt);
Landauer (kTln2);
Bremermann;
adiabatic theorems

Speed of light; Planck
scale; Bekenstein;
Fisher (T(n)1/(d 1 1))

Shannon channel capacity;
Holevo bound;
NC, NP, #P; decidability

Material Dielectric constant;
carrier mobility;
surface morphology;
fabrication-related

Analytical and numerical
modelling

Conductivity; permittivity;
bandgap; heat flow

Propagation speed;
atomic spacing; no
gravitational collapse

Information transfer
between carriers

Device Gate dielectric; channel
charge control; leakage;
latency; cross-talk; ageing

Compact modelling;
parameter selection

CMOS; quantum;
charge-centric;
signal-to-noise ratio;
energy conversion

Interfaces and contacts; entropy density; entropy flow;
size and delay variation; universality

Circuit Delay; inductance;
thermal-related; yield;
reliability; input–output

Interconnect; test;
validation

Dark, darker, dim and grey silicon; interconnect;
cooling efficiency; power density; power supply;
two or three dimensions

Circuit complexity bounds

System and
software

Specification; implementation; validation; cost Synchronization; physical integration; parallelism;
ab initio limits (Lloyd)

The ‘consistency,
availability, partitioning
tolerance’ (CAP) theorem

Summary of material from refs 5, 13–15, 17, 18, 22, 23, 26, 31, 39, 41, 42, 46, 48–50, 53, 54, 57–60, 62, 63, 65, 74–76, 78, 87, 96, 98 and 99.
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resulting optimization problems remain difficult to solve, and heuristics
are only good enough for practical use. Besides frequent algorithmic improve-
ments, each technology generation alters circuit physics and requires new
computer-aided design software. The cost of design has doubled in a few
years, becoming prohibitive for integrated circuits with limited market
penetration14. Emerging technologies, such as FinFETs and high-k dielec-
trics (k is the dielectric constant), circumvent known obstacles using forms
of design optimization. Therefore, reasonably tight limits should account
for potential future optimizations. Low-level technology enhancements,
no matter how powerful, are often viewed as one-off improvements, in
contrast to architectural redesigns that affect many processor generations.
Between technology enhancements and architectural redesigns are global
and local optimizations that alter the ‘texture’ of integrated circuit design,
such as logic restructuring, gate sizing and device parameter selection.
Moore’s law promises higher transistor densities, but some transistors are
designed to be 32 times larger than others. Large gates consume greater
power to drive long interconnects at acceptable speed and satisfy perfor-
mance constraints. Minimizing circuit area and power, subject to timing
constraints (by configuring each logic gate to a certain size, threshold volt-
age, and so on), is a difficult but increasingly important optimization with
a large parameter space. A recent convex optimization method28 saved 30%
power in Intel chips, and the impact of such improvements grows with
circuit size. Many aspects of integrated circuit design are being improved,
continually raising the bar for technologies that compete with comple-
mentary metal-oxide–semiconductors (CMOSs).

Completing new integrated circuit designs, optimizing them and veri-
fying them requires great effort and continuing innovation; for example,
the lack of scalable design automation is a limiting factor for analogue

integrated circuits29,30. In 1999, bottom-up analysis of digital integrated
circuit technologies15,31 outlined design scaling up to self-contained modules
with 50,000 standard cells (each cell contains one to three logic gates), but
further scaling was limited by long-range interconnect. In 2010, physical
separation of modules became less critical, as large-scale placement opti-
mizations, implemented as software tools, assumed greater responsibility
for integrated circuit layout and can now intersperse components of nearby
modules32,33. In a general trend, powerful design automation34 frees circuit
engineers to focus on microarchitecture33, but increasingly relies on algo-
rithmic optimization. Until recently, this strategy suffered significant losses
in performance35 and power36 compared to ideal designs, but has now become
both successful and indispensable owing to the rapidly increasing com-
plexity of digital and mixed-signal electronic systems. Hardware and soft-
ware must now be co-designed and co-verified, with software improving
at a faster rate. Platform-based design combines high-level design abstractions
with the effective re-use of components and functionalities in engineered
systems37. Customizable domain-specific computing8 and domain-specific
programming languages9,10 offload specialization to software running on
re-usable hardware platforms.

Energy–time limits
In predicting the main obstacles to improving modern electronics, the
2013 edition of the International Technology Roadmap for Semiconduc-
tors (ITRS) highlights the management of system power and energy as
the main challenge14. The faster the computation, the more energy it con-
sumes, but actual power–performance tradeoffs depend on the physical
scale. While the ITRS, by its charter, focuses on near-term projections and
integrated circuit design techniques, fundamental limits reflect available
energy resources, properties of the physical space, power-dissipation con-
straints, and energy waste.

Reversibility
A 1961 result by Landauer38 shows that erasing one bit of information entails
an energy loss that $kTln2 (the thermodynamic threshold), where k is
the Boltzmann constant and T is the temperature in Kelvin. This principle
was validated empirically in 2012 (ref. 39) and seems to motivate revers-
ible computing40, where all input information is preserved, incurring addi-
tional costs. Formally speaking, zero-energy computation is prohibited by

Traditional 22 nm Sub-10 nm

Figure 1 | As a metal oxide–semiconductor field effect transistor
(MOSFET) shrinks, the gate dielectric (yellow) thickness approaches several
atoms (0.5 nm at the 22-nm technology node). Atomic spacing limits the
device density to one device per nanometre, even for radical devices. For
advanced transistors, grey spheres indicate silicon atoms, while red and blue
spheres indicate dopant atoms (intentional impurities that alter electrical
properties). Image redrawn from figure 1 of http://cnx.org/content/m32874/
latest/, with permission from Gold Standard Simulations.

Channel
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Electrical potential

Source

Figure 2 | As a MOSFET transistor shrinks, the shape of its electric field
departs from basic rectilinear models, and the level curves become
disconnected. Atomic-level manufacturing variations, especially for dopant
atoms, start affecting device parameters, making each transistor slightly
different96,97. Image redrawn from figure ‘DOTS and LINES’ of ref. 97, with
permission from Gold Standard Simulations.

250–180 nm
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130 nm

(2002)

90 nm
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65 nm
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45 nm
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32 nm
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Figure 3 | The evolution of metallic wire stacks from 1997 to 2010. Stacks
are ordered by the designation of the semiconductor technology node.
Image redrawn from a presentation image by C. Alpert of IBM Research,
with permission.
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the energy–time form of the Heisenberg uncertainty principle (DtDE $B/2):
faster computation requires greater energy41,42. However, recent work
in applied superconductivity43 demonstrates ‘‘highly exotic’’ physically
reversible circuits operating at 4uK with energy dissipation below the ther-
modynamic threshold. They apparently fail to scale to large sizes, run into
other limits, and remain no more practical than ‘mainstream’ super-
conducting circuits and refrigerated low-power CMOS circuits. Tech-
nologies that implement quantum circuits44 can approximate reversible
Boolean computing, but currently do not scale to large sizes, are energy-
inefficient at the system level, rely on fragile components, and require
heavy fault-tolerance overheads13. Conventional integrated circuits also
do not help to obtain energy savings from reversible computing because
they dissipate 30%–60% of all energy in (reversible) wires and repeaters23.
At room temperature, Landauer’s limit amounts to 2.85 3 10221 J—a
very small fraction of the total, given that modern integrated circuits
dissipate 0.1–100 W and contain ,109 logic gates. With the increasing
dominance of interconnect (see section ‘Asymptotic space-time limits’),
more energy is spent on communication than on computation. Logi-
cally reversible computing is important for reasons other than energy
reduction—in cryptography, quantum information processing, and
so on45.

Power constraints and CPUs
The end of CPU frequency scaling. In 2004, Intel abruptly cancelled a
4-GHz CPU project because its high power density required awkward
cooling technologies. Other CPU manufacturers kept clock frequencies
in the 1–6-GHz range, but also resorted to multicore CPUs46. Since dynamic
circuit power grows with clock frequency and supply voltage squared47,
energy can be saved by distributing work among slower, lower-voltage
parallel CPU cores if the parallelization overhead is small.
Dark, darker, dim, grey silicon. A companion trend to Moore’s law—
the Dennard scaling theory48—shows how to keep power consumption
of semiconductor integrated circuits constant while increasing their den-
sity. But Dennard scaling broke down ten years ago48. Extrapolation of
semiconductor scaling trends for CMOSs—the dominant semiconductor
technology for the past 20 years—shows that the power consumption of
transistors available in modern integrated circuits reduces more slowly
than their size (which is subject to Moore’s law)49,50. To ensure acceptable
performance characteristics of transistors, chip power density must be lim-
ited, and a fraction of transistors must be kept dark at any given time. Modern
CPUs have not been able to use all their circuits at once, but this asym-
ptotic effect—termed the ‘‘utilization wall’’49—will soon black out 99%
of the chip, hence the term ‘dark silicon’ and a reasoned reference to the
apocalypse49. Saving power by slowing CPU cores down is termed ‘dim
silicon’. Detailed studies of dark silicon50 show similar results. To this end,
executives from Microsoft and IBM have recently proclaimed an end to

the era of multicore microprocessors51. Two related trends appeared earlier:
(1) increasingly large integrated circuit regions remain transistor-free to aid
routeing and physical synthesis, to accommodate power-supply networks,
and so on52,53—we call them ‘darker silicon’, (2) increasingly many gates
do not perform useful computation but reinforce long, weak interconnects54

or slow down wires that are too short—which I call ‘grey silicon’. Today,
50%–80% of all gates in high-performance integrated circuits are repeaters.
Limits for power supply and cooling. Data centres in the USA consumed
2.2% of its total electricity in 2011. Because power plants take time to build,
we cannot sustain past trends of doubled power consumption per year.
It is possible to improve the efficiency of transmission lines (using high-
temperature superconductors55) and power conversion in data centres,
but the efficiency of on-chip power networks may soon reach 80%–90%,
leaving little room for improvement. Modern integrated circuit power
management includes clock-network and power gating46, per-core voltage
scaling56, charge recovery57 and, in recent processors, a CPU core dedi-
cated to power scheduling. Integrated circuit power consumption depends
quadratically on supply voltage, which has decreased steadily for many
years, but has recently stabilized at 0.5–2 V (ref. 47). Supply voltage typi-
cally exceeds the threshold voltage of FETs by a safety margin that ensures
circuit reliability, fast operation and low leakage. Threshold voltage depends
on the thickness of the gate dielectric, which reached a practical limit of
several atoms (see section ‘Engineering obstacles’). Transistors cannot
operate with supply voltage below approximately 200 mV (ref. 17)—five
times below current practice—and simple circuits reach this limit. With
slower operation, near- and sub-threshold circuits may consume a hundred
times less energy58. Cooling technologies can improve too, but fundamental
quantum limits bound the efficiency of heat removal59–61.

Broader limits
The study in ref. 62 explores a general binary-logic switch model with
binary states represented by two quantum wells separated by a potential
barrier. Representing information by electric charge requires energy for
binary switching and thus limits the logic-switching density, if a signifi-
cant fraction of the chip can switch simultaneously. To circumvent this
limit, one can encode information in spin-states, photon polarizations,
super-conducting currents, or magnetic flux, noting that these carriers
have already been in commercial use (spin-states are particularly attractive
because they promise high-density nonvolatile storage63). More powerful
limits are based on the amount of material in the Earth’s crust (where sili-
con is the second most common element after oxygen), on atomic spacing
(see section ‘Engineering obstacles’), radii, energies and bandgaps, as well
as the wavelength of the electron. We are currently using only a tiny frac-
tion of the Earth’s mass for computing, and yet various limits could be
circumvented if new particles are discovered. Beyond atomic physics, some
limits rely on basic constants: the speed of light, the gravitational constant,
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Figure 4 | FinFET transistors possess a much wider gate dielectric layer (surrounding the fin shape) than do MOSFET transistors and can use multiple fins.
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the quantum (Planck) scale, the Boltzmann constant, and so on. Lloyd42 and
Kraus64 extend well-known bounds by Bremermann and Bekenstein, and
give Moore’s law another 150 years and 600 years, respectively. These results
are too loose to obstruct the performance of practical computers. In con-
trast, current consensus estimates from the ITRS14 give Moore’s law only
another 10–20 years, due to technological and economic considerations2.

Asymptotic space-time limits
Engineering limits for deployed technologies can often be circumvented,
while first-principles limits on energy and power are loose. Reasonably tight
limits are rare.

Limits to parallelism
Suppose we wish to compare a parallel and sequential computer built
from the same units, to argue that a new parallel algorithm is many times
faster than the best sequential algorithm (the same reasoning applies to
logic gates on an integrated circuit). Given N parallel units and an algo-
rithm that runs M times faster on sufficiently large inputs, one can simu-
late the parallel system on the sequential system by dividing its time between
N computational slices. Since this simulation is roughly N times slower, it
runs M/N times faster than the original sequential algorithm. If this ori-
ginal sequential algorithm was the fastest possible, we have M # N. In other
words, a fair comparison should not demonstrate a parallel speedup that
exceeds the number of processors—a superlinear speedup can indicate an
inferior sequential algorithm or the availability of a larger amount of memory
to N processors. The bound is reasonably tight in practice for small N and
can be violated slightly because N CPUs include more CPU cache, but
such violations alone do not justify parallel algorithms—one could instead
buy or build one CPU with a larger cache. A linear speedup is optimist-
ically assumed for the parallelizable component in the 1988 Gustafson’s
law that suggests scaling the number of processors with input size (as illus-
trated by instantaneous search queries over massive data sets)5. Also in 1988,
Fisher65 employed asymptotic runtime estimates instead of numerical lim-
its without considering the parallel and sequential runtime components
that were assumed in Amdahl’s law66 and Gustafson’s law5. Asymptotic
estimates neglect leading constants and offer a powerful way to capture
nonlinear phenomena occurring at large scale.

Fisher65 assumes a sequential computation with T(n) elementary steps
for input of size n, and limits the performance of its parallel variants that
can use an unbounded d-dimensional grid of finite-size computing units
(electrical switches on a semiconductor chip, logic gates, CPU cores, and
so on) communicating at a finite speed, say, bounded by the speed of light.
I highlight only one aspect of this four-page work: the number of steps
required by parallel computation grows as the (d 1 1)th root of T(n). This
result undermines the N-fold speedup assumed in Gustafson’s law for N
processors on appropriately sized input data5. A speedup from runtime
polynomial in n to approximately logn can be achieved in an abstract model
of computation for matrix multiplication and fast Fourier transforms. But
not in physical space65. Surprising as it may seem, after reviewing many
loose limits to computation, we have identified a reasonably tight limit
(the impact of input–output, which is a major bottleneck today, is also
covered in ref. 65). Indeed, many parallel computations today (excluding
multimedia processing and World Wide Web searching) are limited by
several forms of communication and synchronization, including network
and storage access. The billions of logic gates and memory elements in
modern integrated circuits are linked by up to 16 levels of wires (Fig. 3);
longer wires are segmented by repeaters. Most of the physical volume and
circuit delay are attributed to interconnect23. This is relatively new, because
gate delays were dominant until 2000 (ref. 14), but wires get slower relative
to gates at each new technology node. This uneven scaling has compounded
in ways that would have surprised Turing and von Neumann—a single
clock cycle is now far too short for a signal to cross the entire chip, and
even the distance covered in 200 ps (5 GHz) at light speed is close to the
chip size. Yet most electrical engineers and computer scientists are still
primarily concerned with gates.

Implications for three-dimensional and other emerging circuits
The promise of three-dimensional integration for improving circuit
performance can be undermined by the technical obstructions to its indus-
try adoption. To derive limits on possible improvement, we use the result
from ref. 65, which is sensitive to the dimension of the physical space: a
sequential computation with T(n) steps requires of the order of T1/3(n)
steps in two dimensions and T1/4(n) in three. Letting t 5 T1/3(n) shows that
three-dimensional integration asymptotically reduces t to t3/4—a signi-
ficant but not dramatic speedup. This speedup requires an unbounded
number of two-dimensional device layers, otherwise there is no asymp-
totic speedup67. For three-dimensional integrated circuits with two to three
layers, the main benefits of three-dimensional integrated circuit integration
today are in improving manufacturing yield, improving input–output
bandwidth, and combining two-dimensional integrated circuits that are
optimized for random logic, dense memory, field-programmable gate-
arrays, analogue, microelectromechanical systems and so on. Ultrahigh-
density CMOS logic integrated circuits with monolithic three-dimensional
integration68 suffer higher routeing congestion than traditional two-
dimensional integrated circuits.

Emerging technologies promise to improve device parameters, but often
remain limited by scale, faults, and interconnect. For example, quantum
dots enable terahertz switching but hamper nonlocal communication69.
Carbon nanotube FETs70 leverage the extraordinary carrier mobility in semi-
conducting carbon nanotubes to use interconnect more efficiently by improv-
ing drive strength, while reducing supply voltage. Emerging interconnects
include silicon photonics, demonstrated by Intel in 2013 (ref. 71) and inten-
ded as a 100-Gb s21 replacement of copper cables connecting adjacent chips.
Silicon photonics promises to reduce power consumption and form factor.

In a different twist, quantum physics alters the nature of communication
with Einstein’s ‘‘spooky action at a distance’’ facilitated by entanglement13.
However, the flows of information and entropy are subject to quantum
limits59,60. Several quantum algorithms run asymptotically faster than the
best conventional algorithms13, but fault-tolerance overhead offsets their
potential benefits in practice except for large input sizes, and the empirical
evidence of quantum speedups has not been compelling so far72,73. Sev-
eral stages in the development of quantum information processing remain
challenging99, and the surprising difficulty of scaling up reliable quantum
computation could stem from limits on communication and entropy13,59,60.
In contrast, Lloyd42 notes that individual quantum devices now approach
the energy limits for switching, whereas non-quantum devices remain orders
of magnitude away. This suggests a possible obstacle to simulating quan-
tum physics on conventional parallel computers (abstract models aside).
In terms of computational complexity though, quantum computers can-
not attain a significant advantage for many problem types11–13 and are un-
likely to overcome the Fisher limit on parallelism from ref. 65. A similar lack
of a consistent general-purpose speedup limits the benefits of several emerg-
ing technologies in mature applications that contain diverse algorithmic
steps, such as World Wide Web searching and computer-aided design.
Accelerating one step usually does not dramatically speed up the entire
application, as noted by Amdahl66 in 1967. Figuratively speaking, the most
successful computers are designed for the decathlon rather than for the
sprint only.

Complexity-theoretic limits
The previous section, ‘Asymptotic space-time limits’, enabled tighter limits
by neglecting energy and using asymptotic rather than numeric bounds. I
now review a more abstract model in order to focus on the impact of scale,
and to show how recurring trends quickly overtake one-off device-specific
effects. I neglect spatial effects and focus on the nature of computation in
an abstract model (used by software engineers) that represents computa-
tion by elementary steps with input-independent runtimes. Such limits
survive many improvements in computer technologies, and are often stron-
ger for specific problems. For example, the best-known algorithms for mul-
tiplying large numbers are only slightly slower than reading the input (an
obvious speed limit), but only in the asymptotic sense: for numbers with
less than a thousand bits, those algorithms lag behind simpler algorithms
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in actual performance. To focus on what matters most, I no longer track
the asymptotic worst-case complexity of the best algorithms for a given
problem, but merely distinguish polynomial asymptotic growth from
exponential.

Limits formulated in such crude terms (unsolvability in polynomial
time on any computer) are powerful74: the hardness of number-factoring
underpins Internet commerce, while the P ? NP conjecture explains the
lack of satisfactory, scalable solutions to important algorithmic problems,
in optimization and verification of integrated circuit designs, for example75.
(Here P is the class of decision problems that can be solved using simple
computational steps whose number grows no faster than a polynomial of
the size of input data, and NP is the non-deterministic polynomial class
representing those decision problems for which a non-deterministically
guessed solution can be reliably checked using a polynomial number of
steps.) A similar conjecture, P ? NC, seeks to explain why many algorith-
mic problems that can be solved efficiently have not parallelized efficiently76.
Most of these limits have not been proved. Some can be circumvented by
using radically different physics, for example, quantum computers can solve
number factoring in polynomial time (in theory). But quantum computa-
tion does not affect P ? NP (ref. 77). The lack of proofs, despite heavy
empirical evidence, requires faith and is an important limitation of many
nonphysical limits to computing. This faith is not universally shared—
Knuth (see question 17 in http://www.informit.com/articles/article.aspx?
p52213858) argues that P 5 NP would not contradict anything we know
today. A rare proved result by Turing states that checking whether a given
program ever halts is undecidable: no algorithm solves this problem in all
cases regardless of runtime. Yet software developers solve this problem
during peer code reviews, and so do computer science teachers when grad-
ing exams in programming courses.

Worst-case analysis is another limitation of nonphysical limits to com-
puting, but suggests potential gains through approximation and special-
ization. For some NP-hard optimization problems, such as the Euclidean
Travelling Salesman Problem, polynomial-time approximations exist, but
in other cases, such as the Maximum Clique problem, accurate approxima-
tion is as hard as finding optimal solutions78. For some important problems
and algorithms, such as the Simplex algorithm for linear programming,
few inputs lead to exponential runtime, and minute perturbations reduce
runtime to polynomial79.

Conclusions
The death march of Moore’s law1,2 invites discussions of fundamental
limits and alternatives to silicon semiconductors70. Near-term constraints
(obstacles to performance, power, materials, laser sources, manufactur-
ing technologies and so on) are invariably tied to costs and capital, but are
disregarded for the moment as new markets for electronics open up, pop-
ulations increase, and the world economy grows2. Such economic pressures
emphasize the value of computational universality and the broad appli-
cability of integrated circuit architectures to solve multiple tasks under
conventional environmental conditions. In a likely scenario, only CPUs,
graphics processing units, field-programmable gate-arrays and dense mem-
ory integrated circuits will remain viable at the end of Moore’s law, while
specialized circuits will be predominantly manufactured with less advanced
technologies for financial reasons. Indeed, memory chips have exemplified
Moore scaling because of their simpler structure, modest interconnect,
and more controllable manufacturing, but the miniaturization of mem-
ory cells is now slowing down2. The decelerated scaling of CMOS inte-
grated circuits still outperforms the scaling of the most viable emerging
technologies. Empirical scaling laws describing the evolution of computing
are well known80. In addition to Moore’s law, Dennard scaling, Amdahl’s
law and Gustafson’s law (reviewed above), Metcalfe’s law81 states that the
value of a computer network, such as the Internet or Facebook, scales as
the number of user-to-user connections that can be formed. Grosch’s law82

ties N-fold improvements in computer performance to N2-fold cost increases
(in equivalent units). Applying it in reverse, we can estimate the accept-
able performance of cheaper computers. However, such laws only capture
ongoing scaling and may not apply in the future.

The roadmapping process represented by the ITRS14 relies on consensus
estimates and works around engineering obstacles. It tracks improvements
in materials and tools, collects best practices and outlines promising design
strategies. As suggested in refs 17 and 18, it can be enriched by an analysis of
limits. I additionally focus on how closely such limits can be approached.
Aside from the historical ‘wrong turns’ mentioned in the ‘Engineering
obstacles’ and ‘Energy–time limits’ sections above, I uncover interesting
effects when examining the tightness of individual limits. Although energy–
time limits are most critical in computer design14,83, space-time limits appear
tighter65 and capture bottlenecks formed by interconnect and communica-
tion. They suggest optimizing gate locations and sizes, and placing gates in
three dimensions. One can also adapt algorithms to spatial embeddings84,85

and seek space-time limits. But the gap between current technologies and
energy–time limits hints at greater possible rewards. Charge recovery57,
power management46, voltage scaling56, and near-threshold computing58

reduce energy waste. Optimizing algorithms and circuits simultaneously
for energy and spatial embedding86 gives biological systems an edge (from
the ‘one-dimensional’ nematode Caenorhabditis elegans with 302 neurons
to the three-dimensional human brain with 86 billion neurons)1. Yet, using
the energy associated with mass (according to Einstein’s E 5 mc2 formula)
to compute can truly be a ‘nuclear option’—both powerful and contro-
versial. In a well known 1959 talk, which predated Moore’s law, Richard
Feynman suggested that there was ‘‘plenty of room at the bottom,’’ fore-
casting the miniaturization of electronics. Today, with relatively little phys-
ical room left, there is plenty of energy at the bottom. If this energy is tapped
for computing, how can the resulting heat be removed? Recycling heat
into mass or electricity seems to be ruled out by limits to energy conver-
sion and the acceptable thermal range for modern computers.

Technology-specific limits for modern computers tend to express trade-
offs, especially for systems with conflicting performance parameters and
properties87. Little is known about limits on design technologies. Given
that large-scale complex systems are often designed and implemented
hierarchically52 with multiple levels of abstraction, it would be valuable to
capture losses incurred at abstraction boundaries (for example, the phys-
ical layout and manufacturing considerations required to optimize and
build a logic circuit may mean that the logic circuit itself needs to change)
and between levels of design hierarchies. It is common to estimate resources
required for a subsystem and then to implement the subsystem to satisfy
resource budgets. Underestimation is avoided because it leads to failures,
but overestimation results in overdesign. Inaccuracies in estimation and
physical modelling also lead to losses during optimization, especially in
the presence of uncertainty. Clarifying engineering limits gives us the hope
of circumventing them.

Technology-agnostic limits appear to be simple and have had signifi-
cant effects in practice; for example, Aaronson explains why NP-hardness
is unlikely to be circumvented through physics77. Limits to parallel com-
putation became prominent after CPU speed levelled off ten years ago.
These limits suggest that it will be helpful to use the following: faster
interconnect18, local computation that reduces communication88, time-
division multiplexing of logic89, architectural and algorithmic techniques90,
and applications altered to embrace parallelism5. Gustafson advocates a
‘natural selection’: the survival of the applications that are fittest for par-
allelism. In another twist, the performance and power consumption of
industry-scale distributed systems is often described by probability distri-
butions, rather than single numbers91,92, making it harder even to formu-
late appropriate limits. We also cannot yet formulate fundamental limits
related to the complexity of the software-development effort, the efficiency
of CPU caches93, and the computational requirements of incremental
functional verification, but we have noticed that many known limits are
either loose or can be circumvented, leading to secondary limits. For exam-
ple, the P ? NP limit is worded in terms of worst-case rather than average-
case performance, and has not been proved despite much empirical evidence.
Researchers have ruled out entire categories of proof techniques as insuf-
ficient to complete such a proof75,94. They may be esoteric, but such tertiary
limits can be effective in practice—in August 2010, they helped researchers
quickly invalidate Vinay Deolalikar’s highly technical attempt at proving
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P ? NP. On the other hand, the correctness of lengthy proofs for some key
results could not be established with an acceptable level of certainty by review-
ers, prompting efforts towards verifying mathematics by computation95.

In summary, I have reviewed what is known about limits to computa-
tion, including existential challenges arising in the sciences, optimization
challenges arising in engineering, and the current state of the art. These
categories are closely linked during rapid technology development. When
a specific limit is approached and obstructs progress, understanding its
assumptions is a key to circumventing it. Some limits are hopelessly loose
and can be ignored, while other limits remain conjectural and are based
on empirical evidence only; these may be very difficult to establish rigor-
ously. Such limits on limits to computation deserve further study.
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