
Structures Typedef Operators The enumerated type

Structures, Operators
Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

04 October, 2023

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 1 / 47



Structures Typedef Operators The enumerated type

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Structures
Motivation
De�nition
Assignment of value

2 Typename-assignment

3 Operators

De�nitions
Operators
Precedence

4 The enumerated type
Motivation
Syntax
Examples

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 2 / 47



Structures Typedef Operators The enumerated type Motivation De�nition Assignment of value

Chapter 1

Structures

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 3 / 47



Structures Typedef Operators The enumerated type Motivation De�nition Assignment of value

User de�ned types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Built-in types of C language sometimes are not appropriate for
storing more complex data.

Types introduced by the user (programmer)

Enumeration

Structures ← today's topic

Bit�elds

Union

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 4 / 47



Structures Typedef Operators The enumerated type Motivation De�nition Assignment of value

Data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Storing date

1 int year;

2 int month;

3 int day;

Storing student data

1 char neptun [6];

2 unsigned int smalltests;

3 unsigned int missings;

Data of a chess game
(white player, black player,
when, where, moves, result)

Data of one move
(chess piece, from where, where
to)

Data of one square of the board
(column, row)

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 5 / 47



Structures Typedef Operators The enumerated type Motivation De�nition Assignment of value

Storing data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let's write a function to calculate scalar product (dot product)
of 2D vectors!

1 double v_scalarproduct(double x1 , double y1,

2 double x2, double y2)

3 {

4 ...

5 }

How shall we pass coupled parameters?
The number of parameters may become too large

Let's write a function to calculate di�erence of two vectors!
1 ?????? v_difference(double x1, double y1,

2 double x2, double y2)

3 {

4 ...

5 }

How does the function returns with coupled data?
© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 6 / 47



Structures Typedef Operators The enumerated type Motivation De�nition Assignment of value

Encapsulation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Structure

compound data type consisting of data elements (maybe of
di�erent types) that are coupled (belong together)

neptun

small test results

missings

student data elements are called �elds or members

can be copied with one assignment

can be parameter of function

can be return value of function
This is the most e�ective type of C language

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 7 / 47



Structures Typedef Operators The enumerated type Motivation De�nition Assignment of value

Structures in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 struct vector { /* definition of structure type */

2 double x; double y;

3 };

4

5 struct vector v_difference(struct vector a,

6 struct vector b) {

7 struct vector c;

8 c.x = a.x - b.x;

9 c.y = a.y - b.y;

10 return c;

11 }

12

13 int main(void) {

14 struct vector v1 , v2, v3;

15 v1.x = 1.0; v1.y = 2.0;

16 v2 = v1;

17 v3 = v_difference(v1, v2);

18 return 0;

19 }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 8 / 47



Structures Typedef Operators The enumerated type Motivation De�nition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of structures

struct [<structure label>]opt
{<structure member declarations>}
[<variable identifiers>]opt;

1 /* structure type for storing date */

2 struct date {

3 int year;

4 int month;

5 int day;

6 } d1 , d2; /* two instances (variables) */

[<structure label>]opt
can be omitted if we don't refer to it later

[<variable identifiers>]opt
declaration of variables of structure type

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 9 / 47



Structures Typedef Operators The enumerated type Motivation De�nition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Using structure type

Declaration of variables
struct <structure label> <variable identifiers>;

Accessing structure members
<structure identifier>.<member identifier>

Structure members can be used in the same way as variables

1 struct date d1 , d2;

2 d1.year = 2012;

3 d2.year = d1.year;

4 scanf("%d", &d2.month);

Initialization of structures is possible in the same way as for
arrays:

1 struct date d3 = {2011 , 5, 2};

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 10 / 47



Structures Typedef Operators The enumerated type Motivation De�nition Assignment of value

Assignment of value to structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Value of a structure variable (value of all members) can be
updated with one single assignment.

1 struct date d3 = {2013 , 10, 22}, d4;

2 d4 = d3;

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 11 / 47



Structures Typedef Operators The enumerated type

Chapter 2

Typename-assignment

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 12 / 47



Structures Typedef Operators The enumerated type

De�nition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We can rename types in C

1 typedef int rabbit;

2

3 rabbit main() {

4 rabbit i = 3;

5 return i;

6 }

Typename-assignment

typedef assigns a nickname to the type.

It does not create a new type, the type of all variables created
with the nicname will be the original type.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 13 / 47



Structures Typedef Operators The enumerated type

What is the use of it? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

More meaningful source code, more easy to read

1 typedef float voltage; /* we need a smaller */

2

3 voltage V1 = 1.0;

4 double c = 2.0;

5 voltage V2 = c * V1;

Easy to maintain

We can get rid of typenames of more than one word

1 typedef struct vector vector;

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 14 / 47



Structures Typedef Operators The enumerated type

Vector example with typedef DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct { /* we can omit the label */

2 double x; double y;

3 } vector;

4

5

6 vector v_difference(vector a, vector b) {

7 vector c;

8 c.x = a.x - b.x;

9 c.y = a.y - b.y;

10 return c;

11 }

12

13 int main(void) {

14 vector v1, v2 , v3;

15 v1.x = 1.0; v1.y = 2.0;

16 v2 = v1;

17 v3 = v_difference(v1, v2);

18 return 0;

19 }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 15 / 47



Structures Typedef Operators The enumerated type

A more complex structure DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct {

2 double x;

3 double y;

4 } vector;

5

6 typedef struct {

7 vector centrepoint;

8 double radius;

9 } circle;

1 circle k = {{3.0, 2.0}, 1.5};

2 vector v = k.centrepoint;

3 k.centrepoint.y = -2.0;

x

y

k

v

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 16 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Chapter 3

Operators

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 17 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Operations DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Denoted with operators (special symbols)

They work with operands

They result a data with type

Polymorphic: have di�erent behaviour on di�erent operand
types

2.0 ↓ ↓ 3.0

0.6̇ ↓

/

2 ↓ ↓ 3

0 ↓

/

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 18 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Expressions and operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Expressions

eg. 8 + 5 < -a - 2

Built up of constants, variable references and operations

<

+

8 5

13

-

-

a (3)

-3

2

-5

FALSE

by evaluating them the result is one data element with type.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 19 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands

unary � with one operand
-a

binary � with two operands
1+2

Considering the interpretation of the operand

arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 20 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Arithmetic operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

unary plus +<expression>

unary minus -<expression>

addition <expression> + <expression>

subtraction <expression> - <expression>

multiplication <expression> * <expression>

division <expression> / <expression>

type of the result depends on type of the operands, if
both are integer, then it is an integer division

modulus <expression> % <expression>

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 21 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

True or false � Boolean in C (repeated) DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Every boolean like result is int type, and its value is

0, if false
1, if true

1 printf("%d\t%d", 2<3, 2==3);

1 0

A value interpreted as boolean is

false, if its value is represented with 0 bits only
true, if its value is represented with not only 0 bits

1 while (1) { /* infinite loop */ }

2 while (-3.0) { /* infinite loop */ }

3 while (0) { /* this here is never executed */ }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 22 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Relational operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

relational operators

<left value> < <expression>

<left value> <= <expression>

<left value> > <expression>

<left value> >= <expression>

checking equality <left value> == <expression>

checking non-equality <left value> != <expression>

They give logical value (int, 0 or 1) as result.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 23 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical NOT (complement) !<expression>

1 int a = 0x5c; /* 0101 1100, true */

2 int b = !a; /* 0000 0000, false */

3 int c = !b; /* 0000 0001, true */

Conlusion: !!a ̸= a, only if we look at their boolean value.

1 int finish = 0;

2 while (! finish) {

3 int b;

4 scanf("%d", &b);

5 if (b == 0)

6 finish = 1;

7 }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 24 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical AND <expression> && <expression>

logical OR <expression> || <expression>
Logical short-cut: Operands are evaluated from left to right. But
only until the result is not obvious.
We make use of this feature very often.

1 int a[5] = {1, 2, 3, 4, 5};

2 int i = 0;

3 while (i < 5 && a[i] < 20)

4 i = i+1; /* no over -indexing */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 25 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Some more operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We have used them so far, but never have called them operators
before.

operation syntax

function call <function>(<actual arguments>)

array reference <array>[<index>]

structure-reference <structure>.<member>

1 c = sin (3.2); /* () */

2 a[28] = 3; /* [] */

3 v.x = 2.0; /* . */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 26 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Operators with side e�ects DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Some operators have side e�ects

main e�ect: calculating the result of evaluation
side e�ect: the value of the operand is modi�ed

Simple assignment operator =
In C language, assignment is an expression!
its side e�ect is the assignment (a is
modi�ed)
its main e�ect is the new value of a

=

a 2

2

Because of its main e�ect, this is also meaningful:

1 int a;

2 int b = a = 2;

b is initialised with the value of expression a=2 (this also has a
side e�ect), and the side e�ect of it is that a is also modi�ed.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 27 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Left-value DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Assignement operator modi�es value of the left side operand.
There can be only �modi�able entity� on the left side.

Left-value (lvalue)

An expression that can appear on the left side of the assignment.

As far as we know now, left-value can be

a variable reference a = 2

element of an array array[3] = 2

member of a structure v.x = 2

. . .

Examples for non-left-value expressions

constant 3 = 2 error
arithmetic expression a+4 = 2 error
logical expression a>3 = 2 error
function value sin(2.0) = 2 error

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 28 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side e�ect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side e�ects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */

2 /* generates a side effect */

As the main e�ect is surpressed, there is no sense of making
expression statements if the expression has no side e�ect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 29 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Assignement operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

expression syntax

compound assignment

<left-value> += <expression>

<left-value> -= <expression>

<left-value> *= <expression>

<left-value> /= <expression>

<left-value> %= <expression>

Almost: <left-value>=<left-value><op><expression>

1 a += 2; /* a = a + 2; */

2 t[rand ()] += 2; /* NOT t[rand ()] = t[rand ()] + 2; */

Left-value is evaluated only once.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 30 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Other operators with side e�ects DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

expression syntax

post increment <left-value> ++

post decrement <left-value> --

it is increased/decreased by one after evaluation

pre increment ++<left-value>

pre decrement --<left-value>

it is increased/decreased by one before evaluation

1 b = a++; /* b = a; a += 1; */

2 b = ++a; /* a += 1; b = a; */

1 for (i = 0; i < 5; ++i) { /* five times */ }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 31 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;

2 double b;

3 b = a1/(double)a2;

4 storagesize = sizeof 3/a1;

5 storagesize = sizeof(double)a1;

6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 32 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

comma <expression> , <expression>

Operands are evaluated from left to right.

Value of �rst expression is thrown away.

Value and type of the entire expression is the value and type of
the second expression.

1 int step , j;

2 /* two -digit numbers with increasing step size */

3 for(step=1,j=10; j <100; j+=step , step ++)

4 printf("%d\n", j);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 33 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

(ternary) conditional expr. <cond.> ? <expr.1> : <expr.2>

if <cond.> is true, then <expr.1>, otherwise <expr.2>.

only one of <expr.1> and <expr.2> is evaluated.

It does not subtitute the if statement.

1 a = a < 0 ? -a : a; /* determining absolute value */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 34 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Features of operations performed on data DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Precedence

If there are di�erent operations, which is evaluated �rst?

1 int a = 2 + 3 * 4; /* 2 + (3 * 4) */

Associativity

If there are equivalent operations, which is evaluated �rst?
(Does it bind from left to right or from right to left?)

1 int b = 11 - 8 - 2; /* (11 - 8) - 2 */

Instead of memorizing the rules, use parentheses!

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 35 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

List of operators in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Operateors are listed top to bottom, in descending precedence
(operators in the same row have the same precedence)

1 () [] . -> /* highest */

2 ! ~ ++ -- + - * & (<type >) sizeof

3 * / %

4 + -

5 << >>

6 < <= > >=

7 == != /* forbidden to learn! */

8 & /* use parentheses! */

9 ^

10 |

11 &&

12 ||

13 ?:

14 = += -= *= /= %= &= ^= |= <<= >>=

15 , /* lowest */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 36 / 47



Structures Typedef Operators The enumerated type De�nitions Operators Prec.

Operators of C language DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Summarized

A lot of e�ective operators

Some operators have side e�ects that will occur during
evaluation

We always try to separate main and side e�ects
Instead of this:

1 t[++i] = func(c-=2);

we rather write this:

1 c -= 2; /* means the same */

2 ++i; /* not less effective */

3 t[i] = func(c); /* and I will understand it tomorrow too */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 37 / 47



Structures Typedef Operators The enumerated type Motivation Syntax Examples

Chapter 4

The enumerated type

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 38 / 47



Structures Typedef Operators The enumerated type Motivation Syntax Examples

The enumerated type � Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We are writing a game, in which the user can control direction
of the player with 4 keys.

A S D

W

As the input from user needs to be read (checked) frequently,
we create a read_direction() function for this task.

This function reads from the keyboard and returns the
direction to the calling program segment.

What type should the function return with?

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 39 / 47



Structures Typedef Operators The enumerated type Motivation Syntax Examples

The enumerated type � Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Idea Nr. 1: Let's return with the key pressed.
('a','s','w','d'):

1 char read_direction(void)

2 {

3 char ch;

4 scanf("%c", &ch);

5 return ch;

6 } link

Problems:
We have to decode characters into directions many times at
di�erent parts of the source code.
If we change to use the arrow keys ← ↓ ↑ → for control, we
have to modify the source code a thousand time and place.

Solution:
We have to decode in place (inside the function), and should
return with direction.
But how can we do that?

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 40 / 47

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect05/src/direction_bad.c


Structures Typedef Operators The enumerated type Motivation Syntax Examples

The enumerated type � Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Idea Nr. 2: Let's return with int values 0,1,2,3:

'a' 0 ←

'w' 1 ↑

'd' 2 →

's' 3 ↓

1 int read_direction(void) {

2 char ch;

3 scanf("%c", &ch);

4 switch (ch) {

5 case 'a': return 0; /* left */

6 case 'w': return 1; /* up */

7 case 'd': return 2; /* right */

8 case 's': return 3; /* down */

9 }

10 return 0; /* default is left :) */

11 }

Problem:

In other parts of the program we have to use numbers 0-3 for
the directions, so the programmer must remember the
number-direction assignments.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 41 / 47



Structures Typedef Operators The enumerated type Motivation Syntax Examples

The enumerated type � Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We need a type named direction, that can store
LEFT, RIGHT, UP, DOWN values.

We can do such thing in C!

Declaration of the appropriate enumerated type (enum):

1 enum direction {LEFT , RIGHT , UP , DOWN};

How to use the type:

1 enum direction d;

2 d = LEFT;

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 42 / 47



Structures Typedef Operators The enumerated type Motivation Syntax Examples

The enumerated type � Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The �nal solution with the new type

1 enum direction {LEFT , RIGHT , UP , DOWN};

2

3

4 enum direction read_direction(void)

5 {

6 char ch;

7 scanf("%c", &ch);

8 switch (ch)

9 {

10 case 'a': return LEFT;

11 case 'w': return UP;

12 case 'd': return RIGHT;

13 case 's': return DOWN;

14 }

15 return LEFT;

16 } link

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 43 / 47

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect05/src/direction.c


Structures Typedef Operators The enumerated type Motivation Syntax Examples

The enumerated type � Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Usage of the function:

1 enum direction d = read_direction ();

2 if (d == RIGHT)

3 printf("You were eaten by a tiger\n"); link

Without the enumerated type, it would look like this:

1 int d = read_direction ();

2 if (d == 2) /* "magic" constant , what does it mean? */

3 printf("You were eaten by a tiger\n"); link

The enumerated type. . .

replaces �magic constants� with informative code,
focuses on content instead of representation,
allows a higher level programming.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 44 / 47

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect05/src/direction.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect05/src/direction_bad.c


Structures Typedef Operators The enumerated type Motivation Syntax Examples

The enumerated type � De�nition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The enumerated (enum) type

Joins into one type integer type constants referenced by symbolic
names.

enum [<enumeration label>]opt

{ <enumeration list> }

[<variable identifiers>]opt;

1 enum direction {LEFT , RIGHT , UP , DOWN} dir1 , dir2;

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 45 / 47



Structures Typedef Operators The enumerated type Motivation Syntax Examples

enum examples DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 enum month {

2 JAN , /* 0 */

3 FEB , /* 1 */

4 MAR , /* 2 */

5 APR , /* 3 */

6 MAY , /* 4 */

7 JUNE , /* 5 */

8 JULY , /* 6 */

9 AUG , /* 7 */

10 SEPT , /* 8 */

11 OCT , /* 9 */

12 NOV , /* 10 */

13 DEC /* 11 */

14 };

15

16 enum month m=OCT; /*9*/

1 enum {

2 RED , /* 0 */

3 BLUE = 3, /* 3 */

4 GREEN , /* 4 */

5 YELLOW , /* 5 */

6 GRAY = 10 /* 10 */

7 } c;

8

9 c = GREEN;

10 printf("c: %d\n", c);

c: 4

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 46 / 47



Structures Typedef Operators The enumerated type Motivation Syntax Examples

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 04 October, 2023 47 / 47


	Structures
	Motivation
	Definition
	Assignment of value

	Typename-assignment
	Operators
	Definitions
	Operators
	Precedence

	The enumerated type
	Motivation
	Syntax
	Examples


