
Strings Dynamic

Strings � Dynamic memory management

Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

18 October, 2023

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 1 / 36



Strings Dynamic

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Strings

Strings
2 Dynamic memory

management

Allocating and releasing

memory

String example

Smart array example

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 2 / 36



Strings Dynamic Def.

Chapter 1

Strings

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 3 / 36



Strings Dynamic Def.

Strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In C, text is stored in character arrays with termination sign,

called as strings.

The termination sign is the character with 0 ASCII-code '\0',

the null-character.

'S' 'o' 'm' 'e' ' ' 't' 'e' 'x' 't' '\0'

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 4 / 36



Strings Dynamic Def.

De�ning strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

De�nition of character array with initialization

1 char s[] = {'H', 'e', 'l', 'l', 'o', '\0'};

The same in a more simple way

1 char s[] = "Hello"; /* s array (const.addr 0x1000) */

'H' 0x1000

'e' 0x1001

'l' 0x1002

'l' 0x1003

'o' 0x1004

'\0' 0x1005

'D' 0x1000

'e' 0x1001

'l' 0x1002

'l' 0x1003

'a' 0x1004

'\0' 0x1005

Elements of s can be accessed with indexing or with

pointer-arithmetics

1 *s = 'D'; /* s is taken as pointer */

2 s[4] = 'a'; /* s is taken as array */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 5 / 36



Strings Dynamic Def.

De�ning strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We can allocate memory for a longer string than needed now,

thus we have an overhead.
1 char s[10] = "Hello"; /* s array , (const.addr. 0x1000) */

'H' 0x1000

'e' 0x1001

'l' 0x1002

'l' 0x1003

'o' 0x1004

'\0' 0x1005

? 0x1006

? 0x1007

? 0x1008

? 0x1009

'H' 0x1000

'e' 0x1001

'l' 0x1002

'l' 0x1003

'o' 0x1004

'!' 0x1005

'!' 0x1006

'\0' 0x1007

? 0x1008

? 0x1009

Modi�cation:
1 s[5] = s[6] = '!';

2 s[7] = '\0'; /* must be terminated */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 6 / 36



Strings Dynamic Def.

De�ning strings as character arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

De�ning a constant character array and a pointer pointing to

it, with initialization.

1 char *s = "Hello"; /* s pointer */

'H' 0x1000

'e' 0x1001

'l' 0x1002

'l' 0x1003

'o' 0x1004

'\0' 0x1005

s:0x1000

Here the so-called static part of memory is used to store the

string. The content of the string cannot be changed.

We can modify value of s, however it is not recommended,

because this stores the address of our string.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 7 / 36



Strings Dynamic Def.

Remarks DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Character or text?

1 char s[] = "A"; /* two bytes: {'A', '\0'} */

2 char c = 'A'; /* one byte: 'A' */

A text can be empty, but there is no empty character

1 char s[] = ""; /* one byte: {'\0'} */

2 char c = ''; /* ERROR , this is not possible */

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 8 / 36



Strings Dynamic Def.

Reading and displaying strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Strings are read and displayed with format code %s

1 char s[100] = "Hello";

2 printf("%s\n", s);

3 printf("Enter a word not longer than 99 characters: ");

4 scanf("%s", s);

5 printf("%s\n", s);

Hello

Enter a word not longer than 99 characters: ghostbusters

ghostbusters

Why don't we have to pass the size for printf?

Why don't we need the & in the scanf function?

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 9 / 36



Strings Dynamic Def.

Reading and displaying strings DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

scanf reads only until the �rst whitespace character. To read

text consisting of several words, use the gets function:

1 char s[100];

2 printf("Enter a text - max. 99 characters long: ");

3 gets(s);

4 printf("%s\n", s);

Enter a text - max. 99 characters long: this is text

this is text

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 10 / 36



Strings Dynamic Def.

Strings � typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: comparison of strings

1 char *s = "Hello";

2 char *r = "Hello";

3 if (s == r) /* what do we compare? */

4 ...

'H' 0x1000

'e' 0x1001

'l' 0x1002

'l' 0x1003

'o' 0x1004

'\0' 0x1005

s:0x1000

'H' 0x13E8

'e' 0x13E9

'l' 0x13EA

'l' 0x13EB

'o' 0x13EC

'\0' 0x13ED

r:0x13E8

The same mistake happens if de�ned as arrays

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 11 / 36



Strings Dynamic Def.

String functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Comparing strings
the result

positive, if s1 stands after s2 alphabetically

0, if they are identical

negative, if s1 stands before s2 alphabetically

1 int strcmp(char *s1 , char *s2) /* pointer -notation */

2 {

3 while (*s1 != '\0' && *s1 == *s2)

4 {

5 s1++;

6 s2++;

7 }

8 return *s1 - *s2;

9 }

Is it a problem, that s1 and s2 was changed during the check?

Remark: In the solution we made use of the information that

\0 is the 0 ASCII-code character!
© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 12 / 36



Strings Dynamic Def.

Strings � typical mistakes DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Typical mistake: string copy attempt

1 char *s = "Hello";

2 char *r = "Apple";

3 r = s; /* what do we copy */

'H' 0x1000

'e' 0x1001

'l' 0x1002

'l' 0x1003

'o' 0x1004

'\0' 0x1005

'A' 0x13E8

'p' 0x13E9

'p' 0x13EA

'l' 0x13EB

'e' 0x13EC

'\0' 0x13ED

s:0x1000

r:0x13E8

'H' 0x1000

'e' 0x1001

'l' 0x1002

'l' 0x1003

'o' 0x1004

'\0' 0x1005

'A' 0x13E8

'p' 0x13E9

'p' 0x13EA

'l' 0x13EB

'e' 0x13EC

'\0' 0x13ED

s:0x1000

r:0x1000

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 13 / 36



Strings Dynamic Def.

Other string functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

#include <string.h>

strlen length of string (without \0)

strcmp comparing strings

strcpy copying string

strcat concatenating strings

strchr search for character in string

strstr search for string in string

strcpy and strcat functions copy 'without thinking', the user

must provide the allocated memory for the resulting string!

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 14 / 36



Strings Dynamic malloc str example smart example

Chapter 2

Dynamic memory management

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 15 / 36



Strings Dynamic malloc str example smart example

Dynamic memory management DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let's read integer numbers and print them in a reversed order!

The user will enter the number of the numbers to be read

(count).

Let's not use more memory than needed!

1 We read the count (n)

2 We ask memory from the operating system for storing n

integer numbers

3 We read and store the numbers, and print them in reversed

order

4 We give back (hand over) the reserved memory place to the

operating system

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 16 / 36



Strings Dynamic malloc str example smart example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int n, i;

2 int *p;

3

4 printf("How many numbers? ");

5 scanf("%d", &n);

6 p = (int*) malloc(n*sizeof(int));

7 if (p == NULL) return;

8

9 printf("Enter %d numbers :\n", n);

10 for (i = 0; i < n; ++i)

11 scanf("%d", &p[i]);

12

13 printf("Reversed :\n");

14 for (i = 0; i < n; ++i)

15 printf("%d ", p[n-i-1]);

16

17 free(p);

18 p = NULL; link

1

4

2

5

8

20

bytes

0xACDC

p:0x0000

How many numbers? 5

Enter 5 numbers!

1 4 2 5 8

Reversed:

8 5 2 4 1

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 17 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/mallocexample.c


Strings Dynamic malloc str example smart example

The malloc and free functions � <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *malloc(size_t size);

Allocates memory block of size bytes, and the address of the

block is returned as void* type value

The returned void* �is only an address�, we cannot de-refer it.

We can use it only if converted (eg. to int*).

1 int *p; /* starting address of int array */

2 /* Memory allocation for 5 int */

3 p = (int *) malloc (5* sizeof(int ));

If there is not enough memory avaible, the return value is

NULL. This must be checked always.

1 if (p != NULL)

2 {

3 /* using memory , and releasing it */

4 }

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 18 / 36



Strings Dynamic malloc str example smart example

The malloc and free functions � <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void free(void *p);

Releases the memory block starting at address p

The size of the block is not needed, the op.system knows it

(it stored it just before the memory block, this is the reason

for calling it with the starting address)

free(NULL) is allowed (does not perform anything), so we can

do this:
1 int *p = (int *) malloc (5* sizeof(int));

2 if (p != NULL)

3 {

4 /* using it */

5 }

6 free(p); /* works even if NULL */

7 p = NULL; /* a useful step to remember */

As a nullpointer points to nowhere, a good practice is to set a

pointer to NULL after usage, so we can see it is not in use.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 19 / 36



Strings Dynamic malloc str example smart example

malloc � free DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

malloc and free go hand-in-hand,

for each malloc there is a free

1 char *WiFi = (char *) malloc (20* sizeof(char ));

2 int *Lunch = (int *) malloc (23* sizeof(int ));

3 ...

4 free(WiFi);

5 free(Lunch );

If we don't relelase the memory block, memory leak occurs

Good practice rules:

Release in the same function where allocated

Don't modify the pointer that was returned by malloc,

if possible, use the same pointer for releasing

If we cannot keep these rules, make a note in the code about

this (comment)

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 20 / 36



Strings Dynamic malloc str example smart example

The calloc function � <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *calloc(size_t num, size_t size);

Allocates memory block for storing num pieces of elements,

each with size size, the allocated memory block is cleared

(set to zero), and the address of the block is returned as

void* type value

Usage is almost the same as of malloc, except this performs

the calculation num*size, and removes the garbage.

The allocated block must be released in the same way: with

free.

1 int *p = (int *) calloc(5, sizeof(int ));

2 if (p != NULL)

3 {

4 /* using it */

5 }

6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 21 / 36



Strings Dynamic malloc str example smart example

The realloc function � <stdlib.h> DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

void *realloc(void *memblock, size_t size);

resizes to size bytes a memory block that was earlier allocated

the new size can be smallero r larger than the earlier size

if needed, the earlier content is copied to the new place, the

elements are not initialized

its return value is the starting address of the new place

1 int *p = (int *) malloc (3* sizeof(int));

2 p[0] = p[1] = p[2] = 8;

3 p = realloc(p, 5* sizeof(int ));

4 p[3] = p[4] = 8;

5 ...

6 free(p);

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 22 / 36



Strings Dynamic malloc str example smart example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let's create a function that concatenates the strings received

as parameters. The function should allocate memory for the

resulting string, and should return with its address.

1 The function determines the length of the two strings,

2 allocates memory for the result,

3 copies the �rst string into the result string,

4 copies the second string after it.

Of course, this function cannot release the allocated memory,

this must be done in the calling program segment

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 23 / 36



Strings Dynamic malloc str example smart example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 /* concatenate -- concatenating two strings

2 Dynamic allocation , returning with address.

3 */

4 char *concatenate(char *s1, char *s2){

5 size_t l1 = strlen(s1);

6 size_t l2 = strlen(s2);

7 char *s = (char *) malloc ((l1+l2+1)* sizeof(char ));

8 if (s != NULL) {

9 strcpy(s, s1);

10 strcpy(s+l1, s2); /* or strcat(s, s2) */

11 }

12 return s;

13 } link

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 24 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/concatenate.c


Strings Dynamic malloc str example smart example

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Usage of the function

1 char word1 [] = "partner", word2[] = "ship";

2

3 char *res1 = concatenate(word1 , word2);

4 char *res2 = concatenate(word2 , word1);

5 res2 [0] = 'w';

6

7 printf("%s\n%s", res1 , res2);

8

9 /* The function did allocate memory , release it! */

10 free(res1);

11 free(res2); link

partnership

whippartner

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 25 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/concatenate.c


Strings Dynamic malloc str example smart example

Example: Create smart array object DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let us create a double dynamic arary that knows its size, and

can be handled through functions

1 int length(S_array sarr)

2 void print(S_array sarr)

3 void push back(S_array* sarr,double what)

4 int pop(S_array* sarr)

5 double get_element(S_array sarr, int index)

6 double* set_element(S_array sarr, int index)

7 void delete(S_array sarr)

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 26 / 36



Strings Dynamic malloc str example smart example

Smart array example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 #include <stdio.h>

2 #include <stdlib.h>

3 typedef struct {

4 double* Array;

5 int size;

6 }S_array; link

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 27 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/dynamic_exampe.c


Strings Dynamic malloc str example smart example

Smart array example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int length(S_array sarr) {

2 return sarr.size;

3 } link

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 28 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/dynamic_exampe.c


Strings Dynamic malloc str example smart example

Smart array example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void print(S_array sarr) {

2 for (int i = 0; i < sarr.size; i++)

3 printf("%f\t", sarr.Array[i]);

4 } link

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 29 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/dynamic_exampe.c


Strings Dynamic malloc str example smart example

Smart array example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void push_back(S_array* arr , double what) {

2 int i = (*arr).size;

3 (*arr).Array = (double *) realloc ((*arr).Array , (i + 1)

4 * sizeof(double ));

5 if ((*arr). Array == NULL)

6 exit (-1);

7 (*arr).Array[i] = what;

8 (*arr).size ++;

9 } link

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 30 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/dynamic_exampe.c


Strings Dynamic malloc str example smart example

Smart array example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void pop(S_array* arr) {

2 (*arr).size --;

3 } link

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 31 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/dynamic_exampe.c


Strings Dynamic malloc str example smart example

Smart array example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 double get_element(S_array sarr , int idx) {

2 return sarr.Array[idx];

3 } link

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 32 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/dynamic_exampe.c


Strings Dynamic malloc str example smart example

Smart array example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 double* set_element(S_array sarr , int idx) {

2 return &sarr.Array[idx];

3 } link

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 33 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/dynamic_exampe.c


Strings Dynamic malloc str example smart example

Smart array example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void delete(S_array sarr) {

2 free(sarr.Array);

3 } link

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 34 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/dynamic_exampe.c


Strings Dynamic malloc str example smart example

Smart array example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 int main() {

2 S_array smart = { NULL ,0 };

3 push_back (&smart , 3.0);

4 push_back (&smart , 13);

5 push_back (&smart , -12.3);

6 print(smart);

7 pop(& smart );

8 print(smart);

9 *set_element(smart , 0) = -100;

10 print(smart);

11 delete(smart );} link

3.000000 13.000000 -12.300000

3.000000 13.000000

-100.000000 13.000000

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 35 / 36

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect07/src/dynamic_exampe.c


Strings Dynamic malloc str example smart example

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Strings, Dynamic memory management 18 October, 2023 36 / 36


	Strings
	Strings

	Dynamic memory management
	Allocating and releasing memory
	String example
	Smart array example


