
Recursion Union

Recursion � Union

Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

8 November, 2023

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 1 / 26

Recursion Union

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Recursion
De�nition
Writing recursive programs
Recursion or iteration

Applications
Indirect recursion

2 Union and bit�eld
Union
Bit�eld

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 2 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Chapter 1

Recursion

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 3 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Recursion � de�nition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Many mathematical problems can be formulated recursively

Sum of sequence an

Sn =

{
Sn−1 + an n > 0

a0 n = 0

Factorial

n! =

{
(n − 1)! · n n > 0

1 n = 0

Fibonacci numbers

Fn =


Fn−2 + Fn−1 n > 1

1 n = 1

0 n = 0

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 4 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Recursion � de�nition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Several everyday problems can be formulated recursively

Is Albert Einstein my ancestor?

My ancestor? =


Ancestor of my father/mother?

Is he my father?

Is she my mother?

In general

Problem =

{
Simpler, similar problem(s)

Trivial case(es)

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 5 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Recursion � outlook DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Recursion is useful in many areas

Mathematical proof e.g., proof by induction
De�nition e.g., Fibonacci numbers
Algorithm e.g., path �nding algorithms

Data structure e.g., linked list, folders of the op. system
Geometric constructions e.g., fractals

We are going to study recursive data structures and recursive
algorithms

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 6 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Recursive algorithms in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Factorial

n! =

{
(n − 1)! · n n > 0

1 n = 0

Let us implement it to C!

1 unsigned factorial(unsigned n)

2 {

3 if (n > 0)

4 return factorial(n-1) * n;

5 else

6 return 1;

7 }

Calling the function

1 unsigned f = factorial (5); /* it works! */

2 printf("%u\n", f);

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 7 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Some considerations DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How to imagine recursive functions?

1 unsigned f0(void) { return 1; }

2 unsigned f1(void) { return f0() * 1; }

3 unsigned f2(void) { return f1() * 2; }

4 unsigned f3(void) { return f2() * 3; }

5 unsigned f4(void) { return f3() * 4; }

6 unsigned f5(void) { return f4() * 5; }

7 ...

8 unsigned f = f5();

Many di�erent instances of the same function coexist
simultaneously

The instances were called with di�erent parameters

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 8 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

How can multiple instances of the same function coexist?

1 /*

2 recursive factorial function

3 */

4 unsigned factorial(unsigned n)

5 {

6 if (n > 0)

7 return factorial(n-1) * n;

8 else

9 return 1;

10 }

11

12 int main(void)

13 {

14 ...

15 factorial (4);

16 ...

17 }

24register:

40x2000:

150x1FFC:

30x1FF8:

70x1FF4:

20x1FF0:

70x1FEC:

10x1FE8:

70x1FE4:

00x1FE0:

70x1FDC:

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 9 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Implementing recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The mechanism of the function calls in C is capable of writing
recursive functions

All the data (local variables, return addresses) of the calling
functions are stored in the stack

Whether the function calls itself or an other function makes no
di�erence

The maximal depth of recursive calls: given by the stack size

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 10 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Recursion or iteration � factorial DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Calculating n! recursively � elegant, but ine�cient

1 unsigned fact_rec(unsigned n)

2 {

3 if (n == 0)

4 return 1;

5 return fact_rec(n-1) * n;

6 } link

and iteratively � boring, but e�cient

1 unsigned fact_iter(unsigned n)

2 {

3 unsigned f = 1, i;

4 for (i = 2; i <= n; ++i)

5 f *= i;

6 return f;

7 } link

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 11 / 26

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/factorial.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/factorial.c

Recursion Union Def Implementation Rek/iter Applications Indirect

Recursion or iteration � Fibonacci DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Calculating Fn recursively � elegant, but way too slow!

1 unsigned fib_rec(unsigned n)

2 {

3 if (n <= 1)

4 return n;

5 return fib_rec(n-1) + fib_rec(n-2);

6 } link

and iteratively � boring, but e�cient

1 unsigned fib_iter(unsigned n)

2 {

3 unsigned f1 = 0, f2 = 1, f3, i;

4 for (i = 2; i <= n; ++i) {

5 f3 = f1 + f2;

6 f1 = f2;

7 f2 = f3;

8 }

9 return f2;

10 } link
© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 12 / 26

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/fibonacci.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/fibonacci.c

Recursion Union Def Implementation Rek/iter Applications Indirect

Recursion or iteration DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Every recursive algorithm can be transformed to an iterative
one (loops)

There is no general method for this transformation

2 Every iterative algorithm can be transformed to a recursive one

Easy to do systematically, but usually not e�cient

There is no universal truth: the choice between recursive and
iterative algorithms depends on the problem

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 13 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Iterative algorithms recursively DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing arrays recursively (without loops)

1 void print_array(int* array , int n)

2 {

3 if (n == 0)

4 return;

5 printf("%d ", array [0]);

6 print_array(array+1, n-1); /* recursive call */

7 }

Traversing strings recursively

1 void print_string(char* str)

2 {

3 if (str[0] == '\0')

4 return;

5 printf("%c", str [0]);

6 print_string(str +1); /* recursive call */

7 }

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 14 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Printing number in a given numeral system DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

recursively

1 void print_base_rec(unsigned n, unsigned base)

2 {

3 if (n >= base)

4 print_base_rec(n/base , base);

5 printf("%d", n%base);

6 } link

iteratively

1 void print_base_iter(unsigned n, unsigned base)

2 {

3 unsigned d; /* power of base not greater than n */

4 for (d = 1; d*base <= n; d*=base);

5 while (d > 0)

6 {

7 printf("%d", (n/d)%base);

8 d /= base;

9 }

10 } link
© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 15 / 26

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/print_base.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/print_base.c

Recursion Union Def Implementation Rek/iter Applications Indirect

When the recursive algorithm is de�nitely better DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The array below stores a labyrinth

1 char lab [9][9+1] = {

2 "+-------+",

3 "| |",

4 "+-+ ++ ++",

5 "| |",

6 "| + +-+ |",

7 "| | | |",

8 "+-+ +-+ |",

9 "| | |",

10 "+-----+-+"

11 }; link

Let us visit the entire labyrinth from start position (x,y)

1 traverse(lab , 1, 1);

We go in every possible direction and visit the yet unvisited parts of
the labyrinth

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 16 / 26

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/maze.c

Recursion Union Def Implementation Rek/iter Applications Indirect

When the recursive algorithm is de�nitely better DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The simplicity of the recursive solution is striking

1 void traverse(char lab [][9+1] , int x, int y)

2 {

3 lab[x][y] = '.'; /* mark that we were here */

4 if (lab[x-1][y] == ' ') /* go upwards , if needed */

5 traverse(lab , x-1, y);

6 if (lab[x+1][y] == ' ') /* go downwards , if needed */

7 traverse(lab , x+1, y);

8 if (lab[x][y-1] == ' ') /* go left , if needed */

9 traverse(lab , x, y-1);

10 if (lab[x][y+1] == ' ') /* go right , if needed */

11 traverse(lab , x, y+1);

12 } link

It is also possible to do with an iterative algorithm � but it is much
more complex

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 17 / 26

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect08/src/maze.c

Recursion Union Def Implementation Rek/iter Applications Indirect

Indirect recursion DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Indirect recursion: Functions mutually
call each other

function a

function b

1 /* forward declaration */

2 void b(int); /* name , return type , parameter types */

3

4 void a(int n) {

5 ...

6 b(n); /* b can be called due to the forward decl. */

7 ...

8 }

9

10 void b(int n) {

11 ...

12 a(n);

13 ...

14 }

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 18 / 26

Recursion Union Def Implementation Rek/iter Applications Indirect

Forward declaration DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Forward declaration will be necessary for recursive data structures

1 /* forward declaration */

2 struct child_s;

3

4 struct mother_s { /* mother type */

5 char name [50];

6 struct child_s *children [20]; /*pntr. arr. of children */

7 };

8

9 struct child_s { /* child type */

10 char name [50];

11 struct mother_s *mother; /* pointer to the mother */

12 };

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 19 / 26

Recursion Union Union Bit�eld

Chapter 2

Union and bit�eld

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 20 / 26

Recursion Union Union Bit�eld

Union data type DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Union

Simple data type capable of storing data of di�erent types

1 union data {

2 short int i; /* overlapped memory layout !!! */

3 double d;

4 char str [20];

5 };

i
d

str

1 union data a;

2 strcpy(a.str , "Hello world");

3 printf("%f", a.d); /* first 8 bytes as a double */

The size of the type is determined by the longest member

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 21 / 26

Recursion Union Union Bit�eld

Typical application DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 union data {

2 unsigned char bytes [4];

3 unsigned int dword;

4 };

bytes[0] bytes[1] bytes[2] bytes[3]
dword

1 union data a;

2 a.dword = 234568;

3 printf("%u", a.bytes [2]);

The sample code is correct only if the size of unsigned int is at
least 32 bits

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 22 / 26

Recursion Union Union Bit�eld

An other typical application DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct { double x1, x2 , y1, y2; } line_t;

2 typedef struct { double x0, y0 , r; } circle_t;

3

4 typedef struct {

5 enum {LINE , CIRCLE} type; /* what is inside */

6 union { /* this part is EITHER a line OR a circle */

7 line_t line;

8 circle_t circle;

9 };

10 } object_t;

1 object_t array [4];

L line C circle L line L line

1 array [0]. type = LINE;

2 array [0]. line.x1 = 2;

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 23 / 26

Recursion Union Union Bit�eld

Example DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

L line C circle L line L line

1 for (i = 0; i < 4; ++i) {

2 if (array[i].type == LINE) {

3 line_t line = array[i].line;

4 /* process line */

5 }

6 else if (array[i].type == CIRCLE) {

7 circle_t circle = array[i]. circle;

8 /* circle processing */

9 }

10 }

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 24 / 26

Recursion Union Union Bit�eld

Bit�eld data type DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In low level programming it is sometimes useful to work with the
bits of a data as individual variables.

0xx 1 0 1 0 1

abcd

Bit�eld

In a single variable we store several variables.

1 struct status {

2 unsigned a : 2;

3 unsigned b : 1;

4 unsigned c : 2;

5 unsigned d : 1;

6 };

1 struct status st1;

2 st1.a = 1;

3 st1.b = 1;

4 st1.c = 2;

5 st1.d = 0;

Bit�elds can have only unsigned int or int members

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 25 / 26

Recursion Union Union Bit�eld

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Recursion � Union 8 November, 2023 26 / 26

	Recursion
	Definition
	Writing recursive programs
	Recursion or iteration
	Applications
	Indirect recursion

	Union and bitfield
	Union
	Bitfield

