
Dynamic Singly linked

Dynamic data structures � Linked lists
Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

15 November, 2023

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 1 / 31

Dynamic Singly linked

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Dynamic data structures

Self-referencing structure

2 Singly linked lists

De�nition

Traversing

Stack

Insertion

Deleting

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 2 / 31

Dynamic Singly linked Recursive

Chapter 1

Dynamic data structures

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 3 / 31

Dynamic Singly linked Recursive

Dynamic data structure � motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We are writing a chess program, in which there is undo option

for arbitrary number of moves.

The undo-list is the log of the game, its elements are the
moves.

Which piece
From where
Where to
Who is captured (removed)

For logging we use the memory we really need, no more.

The �nal length of the log will be known only at the end of

the game.

We have to increase the amount of allocated memory with

each step (or reduce it, if we undo a move).

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 4 / 31

Dynamic Singly linked Recursive

Dynamic data structure � motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If we use realloc for resizing an array, it may cause many

unnecessary copying of data.

memory: � free, � occupied, � our array

n=0:

n=1:

n=2:

n=3:

n=4:

We need a data structure that does not use continuous blocks

of memory, and its strucure changes dynamically during the

lifecycle of the program.

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 5 / 31

Dynamic Singly linked Recursive

Dynamic data structure DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Dynamic data structure:

its size or structure changes during the lifecycle of the program

it is realized with self-referencing structure

Self-referencing structure

A compound data structure, that contains pointers pointing to itself

1 typedef struct listelem {

2 int data; /* the data we store */

3 struct listelem *next; /* address of next element */

4 } listelem;

next points to a structure that is of the same type, as the one

containing the pointer itself.

struct listelem structure is renamed to listelem, but

when declaring next, we must use the long name (because the

compiler doesn't know, what nickname we will give to it).

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 6 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Chapter 2

Singly linked lists

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 7 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Linked list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1

0x1234

0x1000

3

0x3456

0x1234

-5

0x2345

0x3456

8

NULL

0x2345

0x1000

head

List of listelem type variables

Memory is allocated dynamically, separately for each element

Elements do not form a continuous block in memory

Each element contains the address of the next element

The �rst element is de�ned by the head pointer

The last element points to nowhere (NULL)

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 8 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Linked list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Empty list

NULL

head

List is a self-referencing (recursive) data structure. Each

element points to a list.

1

0x1234

0x1000

3

0x3456

0x1234

-5

0x2345

0x3456

8

NULL

0x2345

0x1000

head

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 9 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

List or array DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The array

occupies as much memory, as needed for storing the data
needs a continuous block of memory
any element can be accessed directly (immediately), by
indexing
inserting a new data involves a lot of copying

The list

elements store the address of the next element, this may need
a lot of memory
can make use of gaps in the fragmented memory
only the next element can be accessed immediately
inserting a new element involves only a little work

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 10 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Traversing a list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

For traversing we need an auxiliary pointer (p), that will run

along the list.

1 listelem *p = head;

2 while (p != NULL)

3 {

4 printf("%d ", p->data); /* p->data : (*p).data */

5 p = p->next; /* arrow operator */

6 }

1

0x1234

0x1000

2

0x2345

0x1234

3

0x3456

0x2345

4

NULL

0x3456

0x1000

head

NULL

p

output

1 2 3 4

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 11 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Passing a list to a function DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

As a list is determined by its starting address, we only need to

pass the startig address for the function

1 void traverse(listelem *head) {

2 listelem *p = head;

3 while (p != NULL)

4 {

5 printf("%d ", p->data);

6 p = p->next;

7 }

8 } link

the same with for loop

1 void traverse(listelem *head) {

2 listelem *p;

3 for (p = head; p != NULL; p = p->next)

4 printf("%d ", p->data);

5 }

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 12 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Inserting element to the front of the list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 p = (listelem *) malloc(sizeof(listelem));

2 p->data = 5;

3 p->next = head;

4 head = p;

1

0x1234

0x1000

2

0x2345

0x1234

3

0x3456

0x2345

4

NULL

0x3456

5

0x1000

0x4567
0x4567

head

0x4567

p

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 13 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Inserting element to the front of the list, with a functionDEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

As the starting address is changed when inserting, we have to

return it (pass it back)

1 listelem *push_front(listelem *head , int d)

2 {

3 listelem *p = (listelem *) malloc(sizeof(listelem));

4 p->data = d;

5 p->next = head;

6 head = p;

7 return head;

8 } link

Usage of function

1 listelem *head = NULL; /* empty list */

2 head = push_front(head , 2); /* head is changed! */

3 head = push_front(head , 4);

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 14 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Inserting element to the front of the list, with a functionDEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Another option is to pass the starting address by its address

1 void push_front(listelem **head, int d)

2 {

3 listelem *p = (listelem *) malloc(sizeof(listelem));

4 p->data = d;

5 p->next = *head;

6 *head = p; /* *head is changes , this is not lost */

7 } link

In this case the usage of the function is:

1 listelem *head = NULL; /* empty list */

2 push_front(&head, 2); /* calling with address */

3 push_front (&head , 4);

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 15 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Deleting element from the front of the list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 p = head;

2 head = head ->next;

3 free(p);

1

0x1234

2

0x2345

0x1234

3

0x3456

0x2345

4

NULL

0x3456

0x1234

head

0x1000

p

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 16 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Deleting element from front of the list with a functionDEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 listelem *pop_front(listelem *head)

2 {

3 if (head != NULL) /* not empty */

4 {

5 listelem *p = head;

6 head = head ->next;

7 free(p);

8 }

9 return head;

10 } link

An empty list must be handled separately

Of course we could use the solution when calling the

functionwith the address of head

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 17 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Stack DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

What we have so far is already enough for storing the undo-list

1 listelem *head = NULL; /* empty list */

2 head = push_front(head , 2); /* step */

3 head = push_front(head , 4); /* step */

4 printf("The last inserted element: %d\n", head ->data);

5 head = pop_front(head); /* undo */

6 head = push_front(head , 5); /* step */

7 head = pop_front(head); /* step */

8 head = pop_front(head); /* strep */

The stack is a LIFO: Last In, First Out

We can access the last inserted element �rst

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 18 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Inserting element to the end of the list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 for (p = head; p->next != NULL; p = p->next);

2 p->next = (listelem *) malloc(sizeof(listelem));

3 p->next ->data = 5;

4 p->next ->next = NULL;

1

0x1234

0x1000

2

0x2345

0x1234

3

0x3456

0x2345

4

0x4567

0x3456

5

NULL

0x4567
0x1000

head

0x3456

p

If the list is empty, checking p->next != NULL is not possible,

this case must be managed separately!

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 19 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Inserting element to the end of the list with a functionDEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 listelem *push_back(listelem *head , int d)

2 {

3 listelem *p;

4

5 if (head == NULL) /* empty list should be

6 managed separately */

7 return push_front(head , d);

8

9 for (p = head; p->next != NULL; p = p->next);

10 p->next = (listelem *) malloc(sizeof(listelem));

11 p->next ->data = d;

12 p->next ->next = NULL;

13 return head;

14 } link

1 listelem *head = NULL;

2 head = push_back(head , 2);

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 20 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Inserting element into a sorted list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If we have to traverse and process our data several times, it is

worth sorting it
Arrays:

re-locating a single element involves a lot of data movements
we �ll up the array and order it afterwards

Lists:
re-locating a single element involves only the modi�cation of
pointers, the elements will remain at the same address in the
memory
it is better to build up our list in a sorted way

The new element must be inserted before the �rst element

that is larger then it

In the present structure each element �can see� only behind

itself, so we cannot insert element before another

We will use two pointers for traversing the list, one of them

will be one step behind (delayed)

We will insert after the delayed pointer
© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 21 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Inserting element (4) into a sorted list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 q = head; p = q->next;

2 while (p != NULL && p->data <= data) { /* shortcut */

3 q = p; p = p->next;

4 }

5 q->next = (listelem *) malloc(sizeof(listelem));

6 q->next ->data = 4;

7 q->next ->next = p;

1

0x1234

0x1000

2

0x4567

0x1234

5

0x3456

0x2345

8

NULL

0x3456

4

0x2345

0x4567
0x1000

head

0x1234

q

0x2345

p

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 22 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Inserting element into a sorted list with a function DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 listelem *insert_sorted(listelem *head , int d)

2 {

3 listelem *p, *q;

4

5 if (head == NULL || head ->data > d) /* shortcut */

6 return push_front(head , d);

7

8 q = head;

9 p = q->next;

10 while (p != NULL && p->data <= d) /* shortcut */ {

11 q = p; p = p->next;

12 }

13 q->next = (listelem *) malloc(sizeof(listelem));

14 q->next ->data = d;

15 q->next ->next = p;

16 return head;

17 } link

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 23 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Inserting element (4) into a sorted list by replacement DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The delayed pointer can be saved (omitted), if we insert behind

the selected element, and after that we replace the data.

1

0x1234

0x1000

2

0x2345

0x1234

4

0x4567

0x2345

8

NULL

0x3456

5

0x3456

0x4567
0x1000

head

0x2345

p

0x3456

q

This algorithm can be used only if we may modify the existing

part of the list � others do not refer to it. But in many times

this is not like that!

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 24 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Deleting element from the end of the list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 p = head;

2 while (p->next ->next != NULL)

3 p = p->next;

4 free(p->next);

5 p->next = NULL;

1

0x1234

0x1000

2

0x2345

0x1234

3

NULL

0x2345

4

NULL

0x1000

head

0x2345

p

If the list is empty or it contains only one element, the

expression p->next->next doesn't make any sense.

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 25 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Deleting element from the end of the list with a functionDEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 listelem *pop_back(listelem *head)

2 {

3 listelem *p;

4

5 if (head == NULL) /* empty */

6 return head;

7

8 if (head ->next == NULL) /* only one element */

9 return pop_front(head);

10

11 for (p = head; p->next ->next != NULL; p = p->next);

12 free(p->next);

13 p->next = NULL;

14 return head;

15 } link

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 26 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Deleting a given element from list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Deleting the data = 3 element

1 q = head; p = head ->next;

2 while (p != NULL && p->data != data) {

3 q = p; p = p->next;

4 }

5 if (p != NULL) { /* now we have it */

6 q->next = p->next;

7 free(p);

8 }

1

0x1234

0x1000

2

0x3456

0x1234

3

0x3456

4

NULL

0x3456

0x1000

head

0x1234

q

0x2345

p

If the list is empty, or we have to delete the �rst element, this

does not work
© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 27 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Deleting a given element from list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 listelem *delete_elem(listelem *head , int d)

2 {

3 listelem *p = head;

4

5 if (head == NULL) return head;

6

7 if (head ->data == d) return pop_front(head);

8

9 while (p->next != NULL && p->next ->data != d)

10 p = p->next;

11 if (p->next != NULL)

12 {

13 listelem *q = p->next;

14 p->next = q->next;

15 free(q);

16 }

17 return head;

18 } link

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 28 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Deleting an entire list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void dispose_list(listelem *head)

2 {

3 while (head != NULL)

4 head = pop_front(head);

5 } link

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 29 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We have everything we need, but it was really cumbersome,
because

we can insert element only after (behind) an element
we can delete only an element behind another element
empty lists and lists with only one element must be handled
separately when inserting or deleting

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 30 / 31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Dynamic data structures � Linked lists 15 November, 2023 31 / 31

	Dynamic data structures
	Self-referencing structure

	Singly linked lists
	Definition
	Traversing
	Stack
	Insertion
	Deleting

