Dynamic data structures — Linked lists

Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horvath, A.B. Nagy, Z. Zséka, P. Fiala, A. Vitéz

15 November, 2023

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 1/31

Content

Dynamic data structures m Traversing

m Self-referencing structure u Stack.
Singly linked lists L] |nsert.|on
m Definition m Deleting

) based on slides by Zséka, Fiala, Vitéz Dynamic data structures — Linked lists 15 November, 2023 2 /31

Recursive

Chapter 1

Dynamic data structures

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 3/31

Dynamic Recursive

Dynamic data structure — motivation

m We are writing a chess program, in which there is undo option
for arbitrary number of moves.
m The undo-list is the log of the game, its elements are the
moves.
m Which piece
m From where
m Where to
m Who is captured (removed)

m For logging we use the memory we really need, no more.
m The final length of the log will be known only at the end of
the game.

m We have to increase the amount of allocated memory with
each step (or reduce it, if we undo a move).

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 4 /31

Dynamic Recursive

Dynamic data structure — motivation

m If we use realloc for resizing an array, it may cause many
unnecessary copying of data.

memory: L] — free, M - occupied, M- our array

n=0: I T I T 7T WO T 7T 77 IO D T

S 1 Il EEEEE B BE
n=2: NN T [DO (77 [DO DO []
n=3: [TN [[[[I B (]
n=4 LT I T [DN W BN [

m We need a data structure that does not use continuous blocks
of memory, and its strucure changes dynamically during the
lifecycle of the program.

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 5 /31

Dynamic Recursive

Dynamic data structure

Dynamic data structure:
m its size or structure changes during the lifecycle of the program
m it is realized with self-referencing structure

Self-referencing structure

A compound data structure, that contains pointers pointing to itself

1 typedef struct listelem {

2 int data; /* the data we store */

3 struct listelem *next; /* address of next element */
4 } listelem;

m next points to a structure that is of the same type, as the one
containing the pointer itself.

m struct listelem structure is renamed to listelem, but
when declaring next, we must use the long name (because the
compiler doesn’t know, what nickname we will give to it).

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 6 /31

Dynamic Singly linked Def Traversing Stack Insertion Deleting

Chapter 2

Singly linked lists

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 7 /31

Singly linked Def Traversing Stack Insertion Deleting

Linked list

0x1000 0x1234 0x3456 0x2345

1 / 2 / -5 / 8
0x1234 0x3456 0x2345 NULL

head
0x1000

List of 1istelem type variables

Memory is allocated dynamically, separately for each element

m
m

m Elements do not form a continuous block in memory

m Each element contains the address of the next element
m

The first element is defined by the head pointer
m The last element points to nowhere (NULL)

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 8 /31

Singly linked Def Travers

Linked list

m Empty list
head

m List is a self-referencing (recursive) data structure. Each
element points to a list.
0x1000 0x1234 _ 0x3456 _ 0x2345

1 / 2 / = / 8
0x1234 0x3456 0%2345 NULL

head
0x1000

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 9/31

Singly linked

List or array

m The array
m occupies as much memory, as needed for storing the data
m needs a continuous block of memory
m any element can be accessed directly (immediately), by
indexing
m inserting a new data involves a lot of copying

m The list

m elements store the address of the next element, this may need
a lot of memory

m can make use of gaps in the fragmented memory

m only the next element can be accessed immediately

m inserting a new element involves only a little work

) based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 10 / 31

Singly linked Def Traversing S

Traversing a list

m For traversing we need an auxiliary pointer (p), that will run

along the list.
1 listelem *p = head;
> while (p != NULL)
3 1
4 printf("%d ", p->data); /* p->data : (*p).data */
5 P = p->next; /* arrow operator x/
6 1}
0x1000 0x1234 0x2345 0x3456
1 / 2 / 3 / 4
0x1234 0x2345 0x3456 NULL
head
0x1000 output
P 1234

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 11 / 31

Singly linked Def Traversing Stack Insertion Deleting

Passing a list to a function |-|T

m As a list is determined by its starting address, we only need to
pass the startig address for the function

void traverse(listelem *head) {
listelem *p = head;
while (p != NULL)
{
printf ("J%d ", p->data);
P = p->next;
}

W N o o0 B W N -

m the same with for loop

void traverse(listelem *head) {
listelem *p;
for (p = head; p != NULL; p = p->next)
printf (")d ", p->data);

1
2
3
4
5

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 12 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Singly linked

Inserting element to the front of the list

1 p = (listelem*)malloc (sizeof (listelem));
2 p->data = b;
3 p->next = head;
4+ head = p;
0x1000 0x1234 0x2345 0x3456
(1 / 2 / 3 / 4
\0x1234 0x2345 0x3456 NULL
head
0x4567
0x45
P
5
0x4567)
0x1000

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 13 / 31

Singly linked Def Traversing Stack Insertion Deleting

Inserting element to the front of the list, with a fI!'I']:T

m As the starting address is changed when inserting, we have to
return it (pass it back)

1 listelem *push_front(listelem *head, int d)

2 o

3 listelem *p = (listelem*)malloc(sizeof (listelem));

4 p->data = d;

5 p->next = head;

6 head = p;

7 return head;

s ¥ link
m Usage of function

1 listelem *head = NULL; /* empty list */

2 head = push_front(head, 2); /* head is changed! */
3 head = push_front (head, 4);

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 14 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Singly linked Def Traversing Stack Insertion Deleting

Inserting element to the front of the list, with a fI!'I']:T

m Another option is to pass the starting address by its address

1 void push_front(listelem **head, int d)

2 {

3 listelem *p = (listelem*)malloc(sizeof(listelem));

4 p->data = d;

5 p->next = xhead;

6 *head = p; /* *head is changes, this is not lost */

7} link
m In this case the usage of the function is:

1 listelem *head = NULL; /% empty list x/

> push_front (&head, 2); /* calling with address x/

3 push_front (&head, 4);

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 15 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Singly linked Def Traversing Stack

Deleting element from the front of the list

1 p = head;
2 head = head->next;
3 free(p);

0x1234 0x2345 0x3456

2 / 3 / 4
0x2345 0x3456 NULL

head
0x1234

P
0x1000

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 16 / 31

Singly linked Def Traversing Stack Insertion Deleting

Deleting element from front of the list with a furl!!ﬁ

listelem *pop_front(listelem *head)
{
if (head !'= NULL) /* not empty */
{

listelem *p = head;
head = head->next;
free(p);

}

return head;

O W N OO R W N

-
o
()

5

~

m An empty list must be handled separately

m Of course we could use the solution when calling the
functionwith the address of head

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 17 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Singly linked Def Traversing Stack Insertion Deleting

m What we have so far is already enough for storing the undo-list

1 listelem *head = NULL; /* empty list */

2 head = push_front (head, 2); /* step */

3 head = push_front (head, 4); /* step */

4 printf ("The last inserted element: %d\n", head->data);
5 head = pop_front (head); /* undo */

6 head = push_front(head, 5); /* step */

7 head = pop_front (head); /* step */

s head = pop_front (head); /* strep */

m The stack is a LIFO: Last In, First Out

m We can access the last inserted element first

) based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 18 / 31

Singly linked Def Traversing Stack Insertion Deleting

Inserting element to the end of the list |-| |
1 for (p = head; p->next != NULL; p = p->next);
2 p->next = (listelem*)malloc(sizeof (listelem));
3 p->next->data = 5;

4 p->next->next = NULL;
0x1000 0x1234 _ 0x2345 _ 0x3456
1 / 2 / 3 / 4
0x1234 0x2345 0x3456 0x4567
head
0x1000
0x4567
p
5
0x3456
NULL

m If the list is empty, checking p->next != NULL is not possible,
this case must be managed separately!

15 November, 2023 19 / 31

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists

Singly linked Def Traversing ack Insertion Deleting

Inserting element to the end of the list with a fuvlﬂ[$

1 listelem *push_back(listelem *head, int d)

2 {

3 listelem *p;

4

5 if (head == NULL) /* empty list should be

6 managed separately */

7 return push_front (head, d);

8

9 for (p = head; p->next != NULL; p = p->next);
10 p->next = (listelem*)malloc(sizeof (listelem));
11 p->next->data = d;

12 p->next->next = NULL;

13 return head;

1 listelem *head = NULL;
2 head = push_back(head, 2);

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023

=
x~

20 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Singly linked Def Traversing ack Insertion Deleting

Inserting element into a sorted list |'|T

m If we have to traverse and process our data several times, it is
worth sorting it
m Arrays:
m re-locating a single element involves a lot of data movements
m we fill up the array and order it afterwards
m Lists:

m re-locating a single element involves only the modification of
pointers, the elements will remain at the same address in the
memory

m it is better to build up our list in a sorted way

m The new element must be inserted before the first element

that is larger then it

m In the present structure each element "can see” only behind
itself, so we cannot insert element before another

m We will use two pointers for traversing the list, one of them
will be one step behind (delayed)

m We will insert after the delayed pointer

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 21 /31

Singly linked

Inserting element (4) into a sorted list

1 q = head; p = gq->next;
2 while (p !'= NULL && p->data <= data) { /* shortcut x*/
3 qQ = p; P = p->next;
4 X
5 q->next = (listelem*)malloc(sizeof(listelem));
6 q->next->data = 4;
7 q->next->next = p;
0x1000 0x1234 0x2345 0x3456
1 / 2 5 / 8
0x1234 0x4567 0x3456 NULL
head
0x1000
4567
q
4
0x1234
0x2345
P

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 22 /31

Singly linked Def Traversing Stack Insertion Deleting

Inserting element into a sorted list with a functiol!"T

1 listelem *insert_sorted(listelem *head, int d)

2 o

3 listelem *p, *q;

4

5 if (head == NULL || head->data > d) /% shortcut */
6 return push_front (head, d);

7

8 q = head;

9 P = gq->next;

10 while (p !'= NULL && p->data <= d) /* shortcut */ {
11 qQ = p; p = p->next;

12 }

13 q->next = (listelem*)malloc(sizeof (listelem));

14 q->next->data = d;

15 q->next->next = p;

16 return head;

7o} link

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023

23 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Singly linked Def Traversing Stack Insertion Deleting

Inserting element (4) into a sorted list by replacelrgil

m The delayed pointer can be saved (omitted), if we insert behind
the selected element, and after that we replace the data.

0%1000 0x1234 0%2345 0%3456
1 ’//"> 2 ’//’> 4 8
0x1234 0x2345 0x4567 NULL
head
0%1000
24567
P
B
0%2345
0x3456
q

m This algorithm can be used only if we may modify the existing
part of the list — others do not refer to it. But in many times
this is not like that

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 24 / 31

Singly linked Def Traversing Stac sertion Deleting

Deleting element from the end of the list |-|T
p = head;
while (p->next->next != NULL)

P = p->next;
free (p->next);
p->next = NULL;

[I N N N

0x1000 0x1234 0x2345

1 / 2 / 3
0x1234 0x2345 NULL

head
0x1000

p
0x2345

m If the list is empty or it contains only one element, the
expression p->next->next doesn’'t make any sense.

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 25 / 31

Singly linked Def Traversing ack Insertion Deleting

Deleting element from the end of the list with a I!'i]Ell'

1 listelem #*pop_back(listelem *head)

2 {

3 listelem *p;

4

5 if (head == NULL) /* empty */

6 return head;

7

8 if (head->next == NULL) /* only one element */

9 return pop_front (head);

10

11 for (p = head; p->next->next != NULL; p = p->next);
12 free(p->next);

13 p->next = NULL;

14 return head;

15} link

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 26 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Singly linked 3 aversing c sertion Deleting

Deleting a given element from list I'|T

m Deleting the data = 3 element

1 q = head; p = head->next;
> while (p !'= NULL && p->data != data) {
3 qQ = p; p = p->next;
4 }
5 if (p != NULL) { /* now we have it */
6 q->next = p->next;
7 free(p);
s}
0x1000 0x1234 _ 0x3456
1 / 2 4
head 0x1234 0x3456 NULL
0x1000
q P

0x1234 0x2345

m If the list is empty, or we have to delete the first element, this
does not work

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 27 / 31

Singly linked Def Traversing Stack Insertion Deleting

Deleting a given element from list I-|T

1 listelem *delete_elem(listelem *head, int d)

2 o

3 listelem *p = head;

4

5 if (head == NULL) return head;

6

7 if (head->data == d) return pop_front (head);
8

9 while (p->next != NULL && p->next->data !'= d)
10 P = p->next;

11 if (p->next !'= NULL)

12 {

13 listelem *q = p->next;

14 p->next = qgq->next;

15 free(q);

16 }

17 return head;

18} link

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 28 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Singly linked Def Traversing Stack sertion Deleting

Deleting an entire list I'lT :

1 void dispose_list(listelem *head)
2 {

3 while (head !'= NULL)

4

5

head = pop_front (head);

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 29 / 31

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/lists.c

Singly linked Def Traversing nsertion Deleting

Summary I-|T

m We have everything we need, but it was really cumbersome,
because

m we can insert element only after (behind) an element

m we can delete only an element behind another element

m empty lists and lists with only one element must be handled
separately when inserting or deleting

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 30 /31

Singly linked Def Traversing Stack Insertion Deleting

Thank you for your attention.

© based on slides by Zséka, Fiala, Vitéz| Dynamic data structures — Linked lists 15 November, 2023 31 /31

	Dynamic data structures
	Self-referencing structure

	Singly linked lists
	Definition
	Traversing
	Stack
	Insertion
	Deleting

