
Doubly linked Special

Doubly linkek lists – Special lists
Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

23 November, 2022

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 1 / 23



Doubly linked Special

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Doubly linked lists and lists
with sentinels

Traversing
Insertion
Deletion
Example

2 Special lists
FIFO
Stack
Lists sorted in different
orders
Comb list

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 2 / 23



Doubly linked Special Traversing Insertion Deletion Example

Chapter 1

Doubly linked lists and lists with sentinels

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 3 / 23



Doubly linked Special Traversing Insertion Deletion Example

Double linking DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

All elements of a doubly linked list contain a pointer to the
next and to the previous element too

1
0x3456
0x????

0x1234
8

0x1245
0x1234

0x3456
3

0x4567
0x3456

0x1245
2

0x????
0x1245

0x4567

Realization in C

1 typedef struct listelem {
2 int data;
3 struct listelem *next;
4 struct listelem *prev;
5 } listelem; link

Doubly linking allows us insertion not only behind but also
before an element

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 4 / 23

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c


Doubly linked Special Traversing Insertion Deletion Example

Sentinels DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A list with sentinels means that the list is closed with a
non-valid element at one or at both ends, this non-valid
element is the sentinel

??
0x3456
0x????

0x1234
8

0x1245
0x1234

0x3456
3

0x4567
0x3456

0x1245
??

0x????
0x1245

0x4567

The type of the sentinel is the same as the type of the
intermediate elements
The data stored in the sentinel is not part of the list

many times its value is not concerned (in an unsorted list)
in a sorted list the data contained in the sentinel can be the
absolutely largest or absolutely smallest element

Benefits of the list with two sentinels:
insertion – even in case of an empty list – is always done
between two elements
deletion is always done from between two elements
we don’t have to think about exceptions© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 5 / 23



Doubly linked Special Traversing Insertion Deletion Example

A doubly linked list with two sentinels DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The sentinels are pointed by the head and tail pointers

??
0x3456
0x????

0x1234
8

0x1245
0x1234

0x3456
3

0x4567
0x3456

0x1245
??

0x????
0x1245

0x4567

0x1234
head

0x4567
tail

we enclose these into one entity, this entity will be the list

1 typedef struct {
2 listelem *head , *tail;
3 } list; link

The sentinels are deleted only when clearing up the list,
members of list are not changed during the usage of the list

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 6 / 23

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c


Doubly linked Special Traversing Insertion Deletion Example

Creating an empty list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The create_list function creates an empty list

1 list create_list(void)
2 {
3 list l;
4 l.head = (listelem *) malloc(sizeof(listelem ));
5 l.tail = (listelem *) malloc(sizeof(listelem ));
6 l.head ->next = l.tail;
7 l.tail ->prev = l.head;
8 return l;
9 } link

??
0x4567
0x????

0x1234
??

0x????
0x1234

0x4567

0x1234
head

0x4567
tail

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 7 / 23

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c


Doubly linked Special Traversing Insertion Deletion Example

Traversing a list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The isempty function checks whether the list is empty

1 int isempty(list l)
2 {
3 return (l.head ->next == l.tail);
4 } link

Traversing a list: with pointer p we go from head->next to
tail.

1 void print_list(list l)
2 {
3 listelem *p;
4 for (p = l.head ->next; p != l.tail; p = p->next)
5 printf("%3d", p->data);
6 } link

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 8 / 23

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c


Doubly linked Special Traversing Insertion Deletion Example

Inserting an element between two neighbouring list elementsDEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void insert_between(listelem *prev , listelem *next ,
2 int d)
3 {
4 listelem *p = (listelem *) malloc(sizeof(listelem ));
5 p->data = d;
6 p->prev = prev;
7 prev ->next = p;
8 p->next = next;
9 next ->prev = p;

10 } link

1
0x1234
0x????

0x1000

2
0x2345
0x1000

0x1234

3
0x????
0x1234

0x2345

0x1000 0x1234 0x2345

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 9 / 23

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c


Doubly linked Special Traversing Insertion Deletion Example

Inserting an element DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

to the front of the list
1 void push_front(list l, int d) {
2 insert_between(l.head , l.head ->next , d);
3 } link

to the back of the list (we don’t check if it is empty)
1 void push_back(list l, int d) {
2 insert_between(l.tail ->prev , l.tail , d);
3 } link

into a sorted list (we don’t need a delayed pointer)
1 void insert_sorted(list l, int d) {
2 listelem *p = l.head ->next;
3 while (p != l.tail && p->data <= d)
4 p = p->next;
5 insert_between(p->prev , p, d);
6 } link

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 10 / 23

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c


Doubly linked Special Traversing Insertion Deletion Example

Deleting an element from a not empty list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void delete(listelem *p)
2 {
3 p->prev ->next = p->next;
4 p->next ->prev = p->prev;
5 free(p);
6 } link

1
0x2345
0x????

0x1000

2
0x2345
0x1000

3
0x????
0x1000

0x2345

0x1234

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 11 / 23

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c


Doubly linked Special Traversing Insertion Deletion Example

Deleting an element from a list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

from the beginning of the list (the deleted data is returned)
1 int pop_front(list l)
2 {
3 int d = l.head ->next ->data;
4 if (! isempty(l))
5 delete(l.head ->next);
6 return d; /* if empty , it returns with
7 sentinel garbage */
8 } link

from the end of the list
1 int pop_back(list l)
2 {
3 int d = l.tail ->prev ->data;
4 if (! isempty(l))
5 delete(l.tail ->prev);
6 return d; /* if empty , it returns with
7 sentinel garbage */
8 } link

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 12 / 23

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c


Doubly linked Special Traversing Insertion Deletion Example

Deleting an element from a list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

deleting the selected element

1 void remove_elem(list l, int d)
2 {
3 listelem *p = l.head ->next;
4 while (p != l.tail && p->data != d)
5 p = p->next;
6 if (p != l.tail)
7 delete(p);
8 } link

deleting the entire list (also the sentinels)

1 void dispose_list(list l) {
2 while (! isempty(l))
3 pop_front(l);
4 free(l.head);
5 free(l.tail);
6 } link

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 13 / 23

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c


Doubly linked Special Traversing Insertion Deletion Example

Usage DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

A simple application

1 list l = create_list ();
2 push_front(l, -1);
3 push_back(l, 1);
4 insert_sorted(l, -3);
5 insert_sorted(l, 8);
6 remove_elem(l, 1);
7 print_list(l);
8 dispose_list(l); link

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 14 / 23

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect11/src/doublesentinel_original.c


Doubly linked Special Traversing Insertion Deletion Example

Of course we can store any data in lists, not only int values
It is useful to separate the stored data and the pointers of the
list according to the following

1 typedef struct {
2 char name [30];
3 int age;
4 ...
5 double height;
6 } data_t;
7

8 typedef struct listelem {
9 data_t data;

10 struct listelem *next , *prev;
11 } listelem;

If the data stored is a single structure type member, then
similarly to the case when having only an int, we can use it
for assignment of value with only one single instruction, it can
be a parameter of a function or a return value.

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 15 / 23



Doubly linked Special FIFO Stack Multi Comb

Chapter 2

Special lists

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 16 / 23



Doubly linked Special FIFO Stack Multi Comb

FIFO DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

FIFO-buffer
FIFO (First In First Out) – we can access the elements in the order
of their insertion

Typical application: queue, where the elements are processed
in the order of their arrival
Realization: eg. with the previous list.

for insertion only push_front
for taking out only pop_back

functions are used.

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 17 / 23



Doubly linked Special FIFO Stack Multi Comb

Stack DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Stack (Stack/LIFO-buffer)

LIFO (Last In First Out) – we can access elements in the reversed
order of their insertion

Typical application: storing ”undo”-list, storing return
addresses of functions
Realization: eg. with the previous list.

for insertion only push_front
for taking out only pop_front

functions are used.

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 18 / 23



Doubly linked Special FIFO Stack Multi Comb

List sorted in different orders DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Type for elements of a list sorted in different orders
simultaneously

1 typedef struct person {
2 data_t data; /* data of person */
3 struct person *next_age; /* next youngest */
4 struct person *next_height; /* next smallest */
5 } person;

data
next_a

next_h

data
next_a

next_h

data
next_a

next_h

data
next_a

next_h

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 19 / 23



Doubly linked Special FIFO Stack Multi Comb

Comb list DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

List of classes, where each class contains the list of the
students.

next
1.b
head

head

John
brown
next

Steve
blond
NULL

next
1.c
head

Mary

blond
next

Katie
black
NULL

NULL
2.c
head

Judy

blond
NULL

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 20 / 23



Doubly linked Special FIFO Stack Multi Comb

Comb list – declarations DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct student_elem {
2 char name [50]; /* name */
3 colour_t hair_colour; /* hair colour (typedef) */
4 struct student_elem *next; /* linking */
5 } student_elem; /* student list element */
6

7 typedef struct class_elem {
8 char name [10]; /* name of class */
9 student_elem *head; /* list of students */

10 struct class_elem *next; /* linking */
11 } class_elem; /* class list element */

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 21 / 23



Doubly linked Special FIFO Stack Multi Comb

Comb list – separating data DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct {
2 char name [50]; /* name */
3 colour_t hair_colour; /* hair colour (typedef) */
4 } student_t; /* student data */
5

6 typedef struct student_elem {
7 student_t student; /* the student */
8 struct student_elem *next; /* linking */
9 } student_elem; /* student list element */

10

11 typedef struct {
12 char name [10]; /* name of class */
13 student_elem *head; /* list of student */
14 } class_t; /* data for class */
15

16 typedef struct class_elem {
17 class_t class; /* the class itself */
18 struct class_elem *next; /* linking */
19 } class_elem; /* class list element */

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 22 / 23



Doubly linked Special FIFO Stack Multi Comb

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Doubly linked and special lists 23 November, 2022 23 / 23


	Doubly linked lists and lists with sentinels
	Traversing
	Insertion
	Deletion
	Example

	Special lists
	FIFO
	Stack
	Lists sorted in different orders
	Comb list


