
Generic algorithm State machines

Generic programming – State machines
Basics of Programming 1

Department of Networked Systems and Services
G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

7 December, 2022

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 1 / 28

Generic algorithm State machines

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Generic algorithm
„Moderately genetic”
„Fully generic”

2 State machines

Motivation
Definition
Implementation
Example

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 2 / 28

Generic algorithm State machines

Menu system with function pointers DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

3 void start_game(void) { printf("Game starts ...\n"); }
4 void list_scores(void) { printf("Steve: 10\n"); }

8 typedef struct {
9 char command [21];

10 void (*func)(void);
11 } menu_t;

13 menu_t menu[] = {
14 {"game", start_game },
15 {"scores", list_scores},
16 {"save", save_game },
17 {"", NULL/*end*/}
18 };

22 char command [21];
23 do { /* no need to touch it again :) */
24 unsigned i;
25 printf("Choose: ");
26 scanf("%s", command);
27 for (i = 0; menu[i].func != NULL; ++i)
28 if (strcmp(command , menu[i]. command)==0)
29 menu[i].func ();
30 } while (strcmp(command , "exit")); link

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 3 / 28

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect13/src/menu.c

Generic algorithm State machines moderately fully

Chapter 1

Generic algorithm

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 4 / 28

Generic algorithm State machines moderately fully

Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let us sort 2D points with bubblesort!
1 typedef struct { double x, y; } point;

1 void xchg(point *px, point *py)
2 {
3 point tmp = *px;
4 *px = *py;
5 *py = tmp;
6 }

according to coordinate x in an ascending order
1 void bubble_point_by_x_asc(point t[], int n)
2 {
3 int iter , i;
4 for (iter = 0; iter < n-1; ++iter)
5 for (i = 0; i < n-iter -1; ++i)
6 if (t[i].x > t[i+1].x)
7 xchg(t+i, t+i+1);
8 }

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 5 / 28

Generic algorithm State machines moderately fully

Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

There are so many combinations. . .

1 void bubble_point_by_x_asc(point t[], int n);
2 void bubble_point_by_x_desc(point t[], int n);
3 void bubble_point_by_y_asc(point t[], int n);
4 void bubble_point_by_y_desc(point t[], int n);
5 void bubble_point_by_abs_asc(point t[], int n);
6 void bubble_point_by_abs_desc(point t[], int n);
7 void bubble_point_by_angle_asc(point t[], int n);
8 void bubble_point_by_angle_desc(point t[], int n);

. . . and these are only 2D points. . .
Let us write a bubble sort algorithm that is independent on the
data to sort and the sorting criteria!
This will be a generic algorithm.

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 6 / 28

Generic algorithm State machines moderately fully

Analysis DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

What is sorting?
It is an algorithm consisting of

comparisons
swaps

These are the primitives of the algorithm
The primitives operate on the data, they have to know its type
and specifics
The sorting algorithm itself determines the calling order of the
primitives only, independent on the data

Generic algorithm:
Step I.:

Let us implement the primitives as functions!
We have done it with the swapping already (function xchg)

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 7 / 28

Generic algorithm State machines moderately fully

Generic sorting DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let us put the comparisons into a separate function!

1 int comp_x_asc(point *a, point *b)
2 {
3 return a->x > b->x;
4 }

1 void bubble_point_by_x_asc(point t[], int n)
2 {
3 int iter , i;
4 for (iter = 0; iter < n-1; ++iter)
5 for (i = 0; i < n-iter -1; ++i)
6 if (comp_x_asc(t+i, t+i+1))
7 xchg(t+i, t+i+1);
8 }

These primitives will be called by different sorting functions

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 8 / 28

Generic algorithm State machines moderately fully

Generic sorting DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

All primitives doing comparison look the same way:
1 int comp_by_ ???(point *a, point *b);

Let us define a function pointer pointing to such functions
1 typedef int (* comp_fp)(point*, point *);

The comparison primitive is a parameter of the sorting function
1 void bubble_point(point t[], int n, comp_fp comp)
2 {
3 int iter , i;
4 for (iter = 0; iter < n-1; ++iter)
5 for (i = 0; i < n-iter -1; ++i)
6 if (comp(t+i, t+i+1))
7 xchg(t+i, t+i+1);
8 }

Pass the apropriate primitive when calling the sorting function
1 bubble_point(points , 8, comp_x_asc);

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 9 / 28

Generic algorithm State machines moderately fully

Generic sorting DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We need to create a function for comparing two data for every
possible sorting criteria
The bubble sort algorihm, written only once and forever,
receives it as a parameter

Can the bubble_point function sort cats according to their
age?
Not yet, unfortunately
But it will be possible soon!

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 10 / 28

Generic algorithm State machines moderately fully

Generic sorting DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let us change the parameters of the primitives

1 int comp_by_ ???(point *array , int i, int j) { ... }
2 void xchg_point(point *array , int i, int j) { ... }

The corresponding function pointer types are:

1 typedef int (* comp_fp)(point*, int , int);
2 typedef void (* xchg_fp)(point*, int , int);

Let us pass the exchange primitives as parameters, too

1 void bubble_point(point *t, int n,
2 comp_fp comp , xchg_fp xch) {
3 int iter , i;
4 for (iter = 0; iter < n-1; ++iter)
5 for (i = 0; i < n-iter -1; ++i)
6 if (comp(t,i,i+1))
7 xch(t, i, i+1);
8 }

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 11 / 28

Generic algorithm State machines moderately fully

Generic sorting DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The pointer arithmetic has been moved from the bubble_point
function to the primitives
It does not have to know the size of the array elements, only the
address of the array
The array address is passed as void *

1 void bubble(void *t,int n, comp_fp comp ,xchg_fp xch) {
2 int iter , i;
3 for (iter = 0; iter < n-1; ++iter)
4 for (i = 0; i < n-iter -1; ++i)
5 if (comp(t, i, i+1))
6 xch(t, i, i+1);
7 }

The bubble does not know whether it sorts 2D points or cats. This
implies that the primitives have to get the array as void *, too.
The appropriate function pointer types are:

1 typedef int (* comp_fp)(void*, int , int);
2 typedef void (* xchg_fp)(void*, int , int);

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 12 / 28

Generic algorithm State machines moderately fully

Generic sorting DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The primitives know exactly the data they are working with
The void * pointer is converted by explicit casting appropriately

1 int comp_cat_by_age_asc(void *t, int i, int j)
2 {
3 cat *c = (cat *)t; /* pointer conversion */
4 return c[i].age > c[j].age;
5 }

1 void xchg_cat(void *t, int i, int j)
2 {
3 cat *c = (cat *)t; /* pointer conversion */
4 cat tmp = c[i];
5 c[i] = c[j];
6 c[j] = tmp;
7 } link

The function call is now fully general
1 bubble(cats , 8, comp_cat_by_age_asc , xchg_cat);
2 bubble(dogs , 24, comp_dog_by_name_desc , xchg_dog);

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 13 / 28

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect13/src/genericsort.c

Generic algorithm State machines moderately fully

Summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Generic vector algorithms
The algorithm receives the input array as void *

The generic algorithm does not use indexing, does not do
pointer arithmetics, it just plays with the indexes
The specialized primitives receive the array as void *, and
they work with it after explicit type casting

Further simplifications
The exchange primitive exchanges the data bit-by-bit, we dont
even have to implement it for every data type, it is enough to
pass the data size only
Quick sort algorithm in <stdlib.h> along the same concept

1 void qsort(void *t, size_t n, size_t elem_size ,
2 int (*comp)(void*, void *));

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 14 / 28

Generic algorithm State machines moderately fully

Remarks DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The pointer conversion involving void * is almost hard
„hacking”
This will compile and run without warnings, too:

1 Dalmatian doggies [101]; /* 101 dalmatians */
2 bubble(doggies , 101, comp_train_by_length ,
3 xchg_city);

Watch out, what you are doing!
We will study a much more elegant approach next semester
(using a different language)

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 15 / 28

Generic algorithm State machines Motiv Def Impl Example.

Chapter 2

State machines

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 16 / 28

Generic algorithm State machines Motiv Def Impl Example.

Motivation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let us read a text and leave out all C++ comments

int apple; // variable apple int apple;

the input is processed character-by-character till the end
when ’/’ is detected, we have to wait for one more
if we are inside a comment, disable the output

Considering the actions to take, our program can be in the
following four states:

base we are not in a comment
slash one ’/’ has been detected, we wait for the next one

comm we are in a comment till the end of the line
end end of the input text

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 17 / 28

Generic algorithm State machines Motiv Def Impl Example.

State machine DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We have to specify how to react to the next input character in the
different state

which will be the next state

the action to take

’/’ ’\n’ EOF other(ch)

base slash – base ’\n’ end – base ch
slash comm – base ’/’, ’\n’ end ’/’ base ’/’, ch
comm comm – base ’\n’ end – comm –

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 18 / 28

Generic algorithm State machines Motiv Def Impl Example.

Simple implementation in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

5 enum state {
6 base , slash , comm
7 } st = base;
8 char ch;
9

10 while(scanf("%c", &ch)==1)
11 {
12 switch(st) {
13 case base:
14 if(ch == ’/’)
15 st = slash;
16 else
17 printf("%c", ch);
18 break;

19 case slash:
20 if(ch == ’/’)
21 st = comm;
22 else {
23 printf("/%c", ch);
24 st = base;
25 }
26 break;
27 case comm:
28 if(ch == ’\n’) {
29 printf("\n");
30 st = base;
31 }
32 break;
33 }
34 }
35 if(st == slash)
36 printf("/"); link

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 19 / 28

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect13/src/statemachine_simple.c

Generic algorithm State machines Motiv Def Impl Example.

Definition of state machines DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

State machine
Event driven programing model based on state variables

The program is a finite automaton that changes its state
according to its current state and the input
It executes an action at state transitions

The elements of state machines:
set of states S
set of events E
set of actions A

Defining a state machine
based on the state transition graph
based on the state transition table

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 20 / 28

Generic algorithm State machines Motiv Def Impl Example.

Properties of state machines DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Requirements:
fully specified: for all (sp, eq) : sp ∈ S , eq ∈ E pairs the next
state si ∈ S and the action aj ∈ A has to be specified
deterministic: si and aj must be uniqely determined for (sp, eq)

sp si
eq aj

. . . eq . . .

.
sp . . . si aj . . .
.

sp: current state

eq: current event

si : next state

aj : action to take

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 21 / 28

Generic algorithm State machines Motiv Def Impl Example.

Implementing state machines DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

the states can be represented by an enumerated type
the events can be represented by (an other) enumerated type
for every action there should be a separate function receiveing
a single character
the content of the table cells are represented by structures
(state, data, function pointer)

3 enum state {base , slash , comm , end}; /* states */
4 enum event {slashc , newline , eof , other}; /* events */
5

6 typedef void (*act)(char); /* actions */
7

8 typedef struct{ /* one cell of the table */
9 enum state next_state;

10 act action;
11 } cell;

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 22 / 28

Generic algorithm State machines Motiv Def Impl Example.

Implementing state machines DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

the main loop is very simple

35 while(st != end)
36 {
37 char ch;
38 /* identify event */
39 enum event ev = next_event (&ch);
40 /* execute action */
41 table[st][ev]. action(ch);
42 /* state transition */
43 st = table[st][ev]. next_state;
44 } link

this loop is the same for every state machine
the states, events, actions and the table are of course different
we assume that the end state is reached eventually

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 23 / 28

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect13/src/statemachine.c

Generic algorithm State machines Motiv Def Impl Example.

Auxiliarly functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

identifying the event based on the character read
the actions are simple functions

13 enum event next_event(char *chp)
14 {
15 if (scanf("%c", chp) !=1) return eof;
16 if (*chp == ’/’) return slashc;
17 if (*chp == ’\n’) return newline;
18 return other;
19 }
20

21 void print(char c) { printf("%c", c); }
22 void slashch(char c) { printf("/%c", c);}
23 void slashout(char c) { printf("/");}
24 void no_output(char c) {}

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 24 / 28

Generic algorithm State machines Motiv Def Impl Example.

Specifying state machines DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

’/’ ’\n’ EOF other(ch)

base slash – base ’\n’ end – base ch
slash comm – base ’/’, ’\n’ end ’/’ base ’/’, ch
comm comm – base ’\n’ end – comm –

table is mapped to a 2D array in main()

the program starts from state base

28 cell table[end +1][other +1] = { /* the table */
29 {{slash ,no_output}, {base ,print}, {end ,no_output},{base ,print}},
30 {{comm ,no_output},{base ,slashch},{end ,slashout},{base ,slashch}},
31 {{comm ,no_output},{base ,print}, {end ,no_output },{comm ,no_output }}
32 };
33 enum state st = base;

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 25 / 28

Generic algorithm State machines Motiv Def Impl Example.

Further examples DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Task: programming the light in the garage
The light can be controlled with the manual switch at the
entrance
There is a switch next to each parking place
Lights are switched off automatically after a certain delay

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 26 / 28

Generic algorithm State machines Motiv Def Impl Example.

Light control in the garage DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

States
ON switched on

OFF switched off

ACTIONS
SWN switch on light
SWF switch off light
RES reset switch-off

timer

Events
ENT button at entrance pressed
PPL button next to a parking place

pressed
TIM switch-off timer expired

ON OFF

TIM SWF

ENT or PPLSWN,RES
ENT or PPL

RES TIM

–

ENT PPL TIM

ON ON RES ON RES OFF SWF
OFF ON SWN,RES ON SWN,RES OFF –

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 27 / 28

Generic algorithm State machines Motiv Def Impl Example.

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Generic – State machines 7 December, 2022 28 / 28

	Generic algorithm
	,,Moderately genetic''
	,,Fully generic''

	State machines
	Motivation
	Definition
	Implementation
	Example

