
Structures Typedef Operators Type conversion

Structures, Operators
Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

14 October, 2020

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 1 / 43

Structures Typedef Operators Type conversion

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Structures
Motivation
Definition
Assignment of value

2 Typename-assignment

3 Operators
Definitions
Operators
Precedence

4 Type conversion

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 2 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Chapter 1

Structures

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 3 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

User defined types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Built-in types of C language sometimes are not appropriate for
storing more complex data.

Types introduced by the user (programmer)

Enumeration
Structures

← today’s topic

Bitfields
Union

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 4 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

User defined types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Built-in types of C language sometimes are not appropriate for
storing more complex data.

Types introduced by the user (programmer)

Enumeration
Structures ← today’s topic
Bitfields
Union

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 4 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Storing date

1 int year;
2 int month;
3 int day;

Storing student data

1 char neptun [6];
2 unsigned int smalltests;
3 unsigned int missings;

Data of a chess game
(white player, black player,
when, where, moves, result)
Data of one move
(chess piece, from where, where
to)
Data of one square of the board
(column, row)

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 5 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Storing date

1 int year;
2 int month;
3 int day;

Storing student data

1 char neptun [6];
2 unsigned int smalltests;
3 unsigned int missings;

Data of a chess game
(white player, black player,
when, where, moves, result)
Data of one move
(chess piece, from where, where
to)
Data of one square of the board
(column, row)

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 5 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Storing date

1 int year;
2 int month;
3 int day;

Storing student data

1 char neptun [6];
2 unsigned int smalltests;
3 unsigned int missings;

Data of a chess game
(white player, black player,
when, where, moves, result)

Data of one move
(chess piece, from where, where
to)
Data of one square of the board
(column, row)

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 5 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Storing date

1 int year;
2 int month;
3 int day;

Storing student data

1 char neptun [6];
2 unsigned int smalltests;
3 unsigned int missings;

Data of a chess game
(white player, black player,
when, where, moves, result)

Data of one move
(chess piece, from where, where
to)
Data of one square of the board
(column, row)

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 5 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Storing date

1 int year;
2 int month;
3 int day;

Storing student data

1 char neptun [6];
2 unsigned int smalltests;
3 unsigned int missings;

Data of a chess game
(white player, black player,
when, where, moves, result)
Data of one move
(chess piece, from where, where
to)

Data of one square of the board
(column, row)

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 5 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Storing date

1 int year;
2 int month;
3 int day;

Storing student data

1 char neptun [6];
2 unsigned int smalltests;
3 unsigned int missings;

Data of a chess game
(white player, black player,
when, where, moves, result)
Data of one move
(chess piece, from where, where
to)

Data of one square of the board
(column, row)

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 5 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Storing date

1 int year;
2 int month;
3 int day;

Storing student data

1 char neptun [6];
2 unsigned int smalltests;
3 unsigned int missings;

Data of a chess game
(white player, black player,
when, where, moves, result)
Data of one move
(chess piece, from where, where
to)
Data of one square of the board
(column, row)

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 5 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Storing data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a function to calculate scalar product (dot product)
of 2D vectors!

1 double v_scalarproduct(double x1 , double y1,
2 double x2 , double y2)
3 {
4 ...
5 }

How shall we pass coupled parameters?
The number of parameters may become too large

Let’s write a function to calculate difference of two vectors!
1 ?????? v_difference(double x1 , double y1,
2 double x2 , double y2)
3 {
4 ...
5 }

How does the function returns with coupled data?

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 6 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Storing data elements that are coupled DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a function to calculate scalar product (dot product)
of 2D vectors!

1 double v_scalarproduct(double x1 , double y1,
2 double x2 , double y2)
3 {
4 ...
5 }

How shall we pass coupled parameters?
The number of parameters may become too large
Let’s write a function to calculate difference of two vectors!

1 ?????? v_difference(double x1 , double y1,
2 double x2 , double y2)
3 {
4 ...
5 }

How does the function returns with coupled data?
© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 6 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Encapsulation DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Structure
compound data type consisting of data elements (maybe of
different types) that are coupled (belong together)

neptun

small test results
missings

student data elements are called fields or members
can be copied with one assignment
can be parameter of function
can be return value of function

This is the most effective type of C language

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 7 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Structures in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 struct vector { /* definition of structure type */
2 double x; double y;
3 };
4

5 struct vector v_difference(struct vector a,
6 struct vector b) {
7 struct vector c;
8 c.x = a.x - b.x;
9 c.y = a.y - b.y;

10 return c;
11 }
12

13 int main(void) {
14 struct vector v1 , v2, v3;
15 v1.x = 1.0; v1.y = 2.0;
16 v2 = v1;
17 v3 = v_difference(v1, v2);
18 return 0;
19 }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 8 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of structures
struct [<structure label>]opt
{<structure member declarations>}
[<variable identifiers>]opt;

1 /* structure type for storing date */
2 struct date {
3 int year;
4 int month;
5 int day;
6 } d1 , d2; /* two instances (variables) */

[<structure label>]opt
can be omitted if we don’t refer to it later

[<variable identifiers>]opt
declaration of variables of structure type

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 9 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of structures
struct [<structure label>]opt
{<structure member declarations>}
[<variable identifiers>]opt;

1 /* structure type for storing date */
2 struct date {
3 int year;
4 int month;
5 int day;
6 } d1 , d2; /* two instances (variables) */

[<structure label>]opt
can be omitted if we don’t refer to it later

[<variable identifiers>]opt
declaration of variables of structure type

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 9 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of structures
struct [<structure label>]opt
{<structure member declarations>}
[<variable identifiers>]opt;

1 /* structure type for storing date */
2 struct date {
3 int year;
4 int month;
5 int day;
6 } d1 , d2; /* two instances (variables) */

[<structure label>]opt
can be omitted if we don’t refer to it later

[<variable identifiers>]opt
declaration of variables of structure type

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 9 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of structures
struct [<structure label>]opt
{<structure member declarations>}
[<variable identifiers>]opt;

1 /* structure type for storing date */
2 struct date {
3 int year;
4 int month;
5 int day;
6 } d1 , d2; /* two instances (variables) */

[<structure label>]opt
can be omitted if we don’t refer to it later

[<variable identifiers>]opt
declaration of variables of structure type

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 9 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of structures
struct [<structure label>]opt
{<structure member declarations>}
[<variable identifiers>]opt;

1 /* structure type for storing date */
2 struct date {
3 int year;
4 int month;
5 int day;
6 } d1 , d2; /* two instances (variables) */

[<structure label>]opt
can be omitted if we don’t refer to it later

[<variable identifiers>]opt
declaration of variables of structure type

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 9 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Declaration of structures
struct [<structure label>]opt
{<structure member declarations>}
[<variable identifiers>]opt;

1 /* structure type for storing date */
2 struct date {
3 int year;
4 int month;
5 int day;
6 } d1 , d2; /* two instances (variables) */

[<structure label>]opt
can be omitted if we don’t refer to it later

[<variable identifiers>]opt
declaration of variables of structure type

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 9 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Using structure type
Declaration of variables
struct <structure label> <variable identifiers>;

Accessing structure members
<structure identifier>.<member identifier>

Structure members can be used in the same way as variables

1 struct date d1 , d2;
2 d1.year = 2012;
3 d2.year = d1.year;
4 scanf("%d", &d2.month);

Initialization of structures is possible in the same way as for
arrays:

1 struct date d3 = {2011 , 5, 2};

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 10 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Using structure type
Declaration of variables
struct <structure label> <variable identifiers>;

Accessing structure members
<structure identifier>.<member identifier>

Structure members can be used in the same way as variables

1 struct date d1 , d2;
2 d1.year = 2012;
3 d2.year = d1.year;
4 scanf("%d", &d2.month);

Initialization of structures is possible in the same way as for
arrays:

1 struct date d3 = {2011 , 5, 2};

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 10 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Using structure type
Declaration of variables
struct <structure label> <variable identifiers>;

Accessing structure members
<structure identifier>.<member identifier>

Structure members can be used in the same way as variables

1 struct date d1 , d2;
2 d1.year = 2012;
3 d2.year = d1.year;
4 scanf("%d", &d2.month);

Initialization of structures is possible in the same way as for
arrays:

1 struct date d3 = {2011 , 5, 2};

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 10 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Using structure type
Declaration of variables
struct <structure label> <variable identifiers>;

Accessing structure members
<structure identifier>.<member identifier>

Structure members can be used in the same way as variables

1 struct date d1 , d2;
2 d1.year = 2012;
3 d2.year = d1.year;
4 scanf("%d", &d2.month);

Initialization of structures is possible in the same way as for
arrays:

1 struct date d3 = {2011 , 5, 2};

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 10 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Using structure type
Declaration of variables
struct <structure label> <variable identifiers>;

Accessing structure members
<structure identifier>.<member identifier>

Structure members can be used in the same way as variables

1 struct date d1 , d2;
2 d1.year = 2012;
3 d2.year = d1.year;
4 scanf("%d", &d2.month);

Initialization of structures is possible in the same way as for
arrays:

1 struct date d3 = {2011 , 5, 2};

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 10 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Using structure type
Declaration of variables
struct <structure label> <variable identifiers>;

Accessing structure members
<structure identifier>.<member identifier>

Structure members can be used in the same way as variables

1 struct date d1 , d2;
2 d1.year = 2012;
3 d2.year = d1.year;
4 scanf("%d", &d2.month);

Initialization of structures is possible in the same way as for
arrays:

1 struct date d3 = {2011 , 5, 2};

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 10 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Using structure type
Declaration of variables
struct <structure label> <variable identifiers>;

Accessing structure members
<structure identifier>.<member identifier>

Structure members can be used in the same way as variables

1 struct date d1 , d2;
2 d1.year = 2012;
3 d2.year = d1.year;
4 scanf("%d", &d2.month);

Initialization of structures is possible in the same way as for
arrays:

1 struct date d3 = {2011 , 5, 2};

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 10 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Syntax of structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Using structure type
Declaration of variables
struct <structure label> <variable identifiers>;

Accessing structure members
<structure identifier>.<member identifier>

Structure members can be used in the same way as variables

1 struct date d1 , d2;
2 d1.year = 2012;
3 d2.year = d1.year;
4 scanf("%d", &d2.month);

Initialization of structures is possible in the same way as for
arrays:

1 struct date d3 = {2011 , 5, 2};

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 10 / 43

Structures Typedef Operators Type conversion Motivation Definition Assignment of value

Assignment of value to structures DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Value of a structure variable (value of all members) can be
updated with one single assignment.

1 struct date d3 = {2013 , 10, 22}, d4;
2 d4 = d3;

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 11 / 43

Structures Typedef Operators Type conversion

Chapter 2

Typename-assignment

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 12 / 43

Structures Typedef Operators Type conversion

Definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We can rename types in C

1 typedef int rabbit;
2

3 rabbit main() {
4 rabbit i = 3;
5 return i;
6 }

Typename-assignment

typedef assigns a nickname to the type.
It does not create a new type, the type of all variables created
with the nicname will be the original type.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 13 / 43

Structures Typedef Operators Type conversion

Definition DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We can rename types in C

1 typedef int rabbit;
2

3 rabbit main() {
4 rabbit i = 3;
5 return i;
6 }

Typename-assignment

typedef assigns a nickname to the type.
It does not create a new type, the type of all variables created
with the nicname will be the original type.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 13 / 43

Structures Typedef Operators Type conversion

What is the use of it? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

More meaningful source code, more easy to read

1 typedef double voltage;
2

3 voltage V1 = 1.0;
4 double c = 2.0;
5 voltage V2 = c * V1;

Easy to maintain

We can get rid of typenames of more than one word

1 typedef struct vector vector;

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 14 / 43

Structures Typedef Operators Type conversion

What is the use of it? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

More meaningful source code, more easy to read

1 typedef long double voltage; /* we need more accuracy */
2

3 voltage V1 = 1.0;
4 double c = 2.0;
5 voltage V2 = c * V1;

Easy to maintain

We can get rid of typenames of more than one word

1 typedef struct vector vector;

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 14 / 43

Structures Typedef Operators Type conversion

What is the use of it? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

More meaningful source code, more easy to read

1 typedef float voltage; /* we need a smaller */
2

3 voltage V1 = 1.0;
4 double c = 2.0;
5 voltage V2 = c * V1;

Easy to maintain

We can get rid of typenames of more than one word

1 typedef struct vector vector;

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 14 / 43

Structures Typedef Operators Type conversion

What is the use of it? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

More meaningful source code, more easy to read

1 typedef float voltage; /* we need a smaller */
2

3 voltage V1 = 1.0;
4 double c = 2.0;
5 voltage V2 = c * V1;

Easy to maintain

We can get rid of typenames of more than one word

1 typedef struct vector vector;

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 14 / 43

Structures Typedef Operators Type conversion

Vector example with typedef DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 struct vector { /* new structure type */
2 double x; double y;
3 };
4 typedef struct vector vector; /* renaming */
5

6 vector v_difference(vector a, vector b) {
7 vector c;
8 c.x = a.x - b.x;
9 c.y = a.y - b.y;

10 return c;
11 }
12

13 int main(void) {
14 vector v1, v2 , v3;
15 v1.x = 1.0; v1.y = 2.0;
16 v2 = v1;
17 v3 = v_difference(v1, v2);
18 return 0;
19 }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 15 / 43

Structures Typedef Operators Type conversion

Vector example with typedef DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct vector { /* done in one step */
2 double x; double y;
3 } vector;
4

5

6 vector v_difference(vector a, vector b) {
7 vector c;
8 c.x = a.x - b.x;
9 c.y = a.y - b.y;

10 return c;
11 }
12

13 int main(void) {
14 vector v1, v2 , v3;
15 v1.x = 1.0; v1.y = 2.0;
16 v2 = v1;
17 v3 = v_difference(v1, v2);
18 return 0;
19 }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 15 / 43

Structures Typedef Operators Type conversion

Vector example with typedef DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct { /* we can omit the label */
2 double x; double y;
3 } vector;
4

5

6 vector v_difference(vector a, vector b) {
7 vector c;
8 c.x = a.x - b.x;
9 c.y = a.y - b.y;

10 return c;
11 }
12

13 int main(void) {
14 vector v1, v2 , v3;
15 v1.x = 1.0; v1.y = 2.0;
16 v2 = v1;
17 v3 = v_difference(v1, v2);
18 return 0;
19 }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 15 / 43

Structures Typedef Operators Type conversion

A more complex structure DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct {
2 double x;
3 double y;
4 } vector;
5

6 typedef struct {
7 vector centrepoint;
8 double radius;
9 } circle;

1 circle k = {{3.0, 2.0}, 1.5};
2 vector v = k.centrepoint;
3 k.centrepoint.y = -2.0;

x

y

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 16 / 43

Structures Typedef Operators Type conversion

A more complex structure DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct {
2 double x;
3 double y;
4 } vector;
5

6 typedef struct {
7 vector centrepoint;
8 double radius;
9 } circle;

1 circle k = {{3.0, 2.0}, 1.5};
2 vector v = k.centrepoint;
3 k.centrepoint.y = -2.0;

x

y

k

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 16 / 43

Structures Typedef Operators Type conversion

A more complex structure DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct {
2 double x;
3 double y;
4 } vector;
5

6 typedef struct {
7 vector centrepoint;
8 double radius;
9 } circle;

1 circle k = {{3.0, 2.0}, 1.5};
2 vector v = k.centrepoint;
3 k.centrepoint.y = -2.0;

x

y

k v

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 16 / 43

Structures Typedef Operators Type conversion

A more complex structure DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 typedef struct {
2 double x;
3 double y;
4 } vector;
5

6 typedef struct {
7 vector centrepoint;
8 double radius;
9 } circle;

1 circle k = {{3.0, 2.0}, 1.5};
2 vector v = k.centrepoint;
3 k.centrepoint.y = -2.0;

x

y

k

v

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 16 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Chapter 3

Operators

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 17 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Operations DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Denoted with operators (special symbols)
They work with operands
They result a data with type

Polymorphic: have different behaviour on different operand
types

2.0 ↓ ↓ 3.0

0.6̇ ↓

/

2 ↓ ↓ 3

0 ↓

/

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 18 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Operations DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Denoted with operators (special symbols)
They work with operands
They result a data with type
Polymorphic: have different behaviour on different operand
types

2.0 ↓ ↓ 3.0

0.6̇ ↓

/

2 ↓ ↓ 3

0 ↓

/

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 18 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Expressions and operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Expressions

eg. 8 + 5 < -a - 2
Built up of constants, variable references and operations

<

+

8 5

13

-

-

a (3)

-3

2

-5

FALSE

by evaluating them the result is one data element with type.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 19 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Expressions and operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Expressions
eg. 8 + 5 < -a - 2

Built up of constants, variable references and operations

<

+

8 5

13

-

-

a (3)

-3

2

-5

FALSE

by evaluating them the result is one data element with type.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 19 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Expressions and operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Expressions
eg. 8 + 5 < -a - 2
Built up of constants, variable references and operations

<

+

8 5

13

-

-

a (3)

-3

2

-5

FALSE

by evaluating them the result is one data element with type.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 19 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Expressions and operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Expressions
eg. 8 + 5 < -a - 2
Built up of constants, variable references and operations

<

+

8 5

13

-

-

a (3)

-3

2

-5

FALSE

by evaluating them the result is one data element with type.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 19 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands

unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand

arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 20 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a

binary – with two operands
1+2

Considering the interpretation of the operand

arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 20 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand

arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 20 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand

arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 20 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand
arithmetic

relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 20 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand
arithmetic
relational

logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 20 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand
arithmetic
relational
logical

bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 20 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand
arithmetic
relational
logical
bitwise

misc

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 20 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand
arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 20 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Arithmetic operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

unary plus +<expression>
unary minus -<expression>
addition <expression> + <expression>

subtraction <expression> - <expression>

multiplication <expression> * <expression>

division <expression> / <expression>
type of the result depends on type of the operands, if
both are integer, then it is an integer division
modulus <expression> % <expression>

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 21 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

True or false – Boolean in C (repeated) DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Every boolean like result is int type, and its value is
0, if false
1, if true

1 printf("%d\t%d", 2<3, 2==3);

1 0

A value interpreted as boolean is
false, if its value is represented with 0 bits only
true, if its value is represented with not only 0 bits

1 while (1) { /* infinite loop */ }
2 while (-3.0) { /* infinite loop */ }
3 while (0) { /* this here is never executed */ }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 22 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

True or false – Boolean in C (repeated) DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Every boolean like result is int type, and its value is
0, if false
1, if true

1 printf("%d\t%d", 2<3, 2==3);

1 0

A value interpreted as boolean is
false, if its value is represented with 0 bits only
true, if its value is represented with not only 0 bits

1 while (1) { /* infinite loop */ }
2 while (-3.0) { /* infinite loop */ }
3 while (0) { /* this here is never executed */ }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 22 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Relational operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

relational operators

<left value> < <expression>

<left value> <= <expression>

<left value> > <expression>

<left value> >= <expression>

checking equality <left value> == <expression>

checking non-equality <left value> != <expression>

They give logical value (int, 0 or 1) as result.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 23 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical NOT (complement) !<expression>

1 int a = 0x5c; /* 0101 1100, true */
2 int b = !a; /* 0000 0000, false */
3 int c = !b; /* 0000 0001, true */

Conlusion: !!a 6= a, only if we look at their boolean value.

1 int finish = 0;
2 while (! finish) {
3 int b;
4 scanf("%d", &b);
5 if (b == 0)
6 finish = 1;
7 }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 24 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical NOT (complement) !<expression>

1 int a = 0x5c; /* 0101 1100, true */
2 int b = !a; /* 0000 0000, false */
3 int c = !b; /* 0000 0001, true */

Conlusion: !!a 6= a, only if we look at their boolean value.

1 int finish = 0;
2 while (! finish) {
3 int b;
4 scanf("%d", &b);
5 if (b == 0)
6 finish = 1;
7 }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 24 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical AND <expression> && <expression>

logical OR <expression> || <expression>

Logical short-cut: Operands are evaluated from left to right. But
only until the result is not obvious.
We make use of this feature very often.

1 int a[5] = {1, 2, 3, 4, 5};
2 int i = 0;
3 while (i < 5 && a[i] < 20)
4 i = i+1; /* no over -indexing */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 25 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical AND <expression> && <expression>

logical OR <expression> || <expression>
Logical short-cut: Operands are evaluated from left to right. But
only until the result is not obvious.

We make use of this feature very often.

1 int a[5] = {1, 2, 3, 4, 5};
2 int i = 0;
3 while (i < 5 && a[i] < 20)
4 i = i+1; /* no over -indexing */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 25 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical AND <expression> && <expression>

logical OR <expression> || <expression>
Logical short-cut: Operands are evaluated from left to right. But
only until the result is not obvious.
We make use of this feature very often.

1 int a[5] = {1, 2, 3, 4, 5};
2 int i = 0;
3 while (i < 5 && a[i] < 20)
4 i = i+1; /* no over -indexing */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 25 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Some more operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We have used them so far, but never have called them operators
before.

operation syntax

function call <function>(<actual arguments>)
array reference <array>[<index>]
structure-reference <structure>.<member>

1 c = sin (3.2); /* () */
2 a[28] = 3; /* [] */
3 v.x = 2.0; /* . */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 26 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Operators with side effects DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Some operators have side effects
main effect: calculating the result of evaluation
side effect: the value of the operand is modified

Simple assignment operator =
In C language, assignment is an expression!
its side effect is the assignment (a is
modified)
its main effect is the new value of a

=

a 2

2

Because of its main effect, this is also meaningful:

1 int a;
2 int b = a = 2;

b is initialised with the value of expression a=2 (this also has a
side effect), and the side effect of it is that a is also modified.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 27 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Operators with side effects DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Some operators have side effects
main effect: calculating the result of evaluation
side effect: the value of the operand is modified

Simple assignment operator =
In C language, assignment is an expression!
its side effect is the assignment (a is
modified)
its main effect is the new value of a

=

a 2

2

Because of its main effect, this is also meaningful:

1 int a;
2 int b = a = 2;

b is initialised with the value of expression a=2 (this also has a
side effect), and the side effect of it is that a is also modified.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 27 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Operators with side effects DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Some operators have side effects
main effect: calculating the result of evaluation
side effect: the value of the operand is modified

Simple assignment operator =
In C language, assignment is an expression!
its side effect is the assignment (a is
modified)
its main effect is the new value of a

=

a 2

2

Because of its main effect, this is also meaningful:

1 int a;
2 int b = a = 2;

b is initialised with the value of expression a=2 (this also has a
side effect), and the side effect of it is that a is also modified.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 27 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Left-value DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Assignement operator modifies value of the left side operand.
There can be only ”modifiable entity” on the left side.

Left-value (lvalue)

An expression that can appear on the left side of the assignment.

As far as we know now, left-value can be
a variable reference a = 2
element of an array array[3] = 2
member of a structure v.x = 2
. . .

Examples for non-left-value expressions
constant 3 = 2 error
arithmetic expression a+4 = 2 error
logical expression a>3 = 2 error
function value sin(2.0) = 2 error

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 28 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Left-value DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Assignement operator modifies value of the left side operand.
There can be only ”modifiable entity” on the left side.

Left-value (lvalue)

An expression that can appear on the left side of the assignment.

As far as we know now, left-value can be
a variable reference a = 2
element of an array array[3] = 2
member of a structure v.x = 2
. . .

Examples for non-left-value expressions
constant 3 = 2 error
arithmetic expression a+4 = 2 error
logical expression a>3 = 2 error
function value sin(2.0) = 2 error

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 28 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Left-value DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Assignement operator modifies value of the left side operand.
There can be only ”modifiable entity” on the left side.

Left-value (lvalue)

An expression that can appear on the left side of the assignment.

As far as we know now, left-value can be
a variable reference a = 2
element of an array array[3] = 2
member of a structure v.x = 2
. . .

Examples for non-left-value expressions
constant 3 = 2 error
arithmetic expression a+4 = 2 error
logical expression a>3 = 2 error
function value sin(2.0) = 2 error

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 28 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Left-value DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Assignement operator modifies value of the left side operand.
There can be only ”modifiable entity” on the left side.

Left-value (lvalue)

An expression that can appear on the left side of the assignment.

As far as we know now, left-value can be
a variable reference a = 2
element of an array array[3] = 2
member of a structure v.x = 2
. . .

Examples for non-left-value expressions
constant 3 = 2 error
arithmetic expression a+4 = 2 error
logical expression a>3 = 2 error
function value sin(2.0) = 2 error

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 28 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */
2 /* generates a side effect */

As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 29 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */
2 /* generates a side effect */

As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 29 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */
2 /* generates a side effect */

As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 29 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */
2 /* generates a side effect */

As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 29 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */
2 /* generates a side effect */

As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 29 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Assignement operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

expression syntax

compound assignment

<left-value> += <expression>

<left-value> -= <expression>

<left-value> *= <expression>

<left-value> /= <expression>

<left-value> %= <expression>

Almost: <left-value>=<left-value><op><expression>

1 a += 2; /* a = a + 2; */
2 t[rand ()] += 2; /* NOT t[rand ()] = t[rand ()] + 2; */

Left-value is evaluated only once.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 30 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Assignement operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

expression syntax

compound assignment

<left-value> += <expression>

<left-value> -= <expression>

<left-value> *= <expression>

<left-value> /= <expression>

<left-value> %= <expression>

Almost: <left-value>=<left-value><op><expression>

1 a += 2; /* a = a + 2; */
2 t[rand ()] += 2; /* NOT t[rand ()] = t[rand ()] + 2; */

Left-value is evaluated only once.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 30 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators with side effects DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

expression syntax

post increment <left-value> ++
post decrement <left-value> --
it is increased/decreased by one after evaluation

pre increment ++<left-value>
pre decrement --<left-value>
it is increased/decreased by one before evaluation

1 b = a++; /* b = a; a += 1; */
2 b = ++a; /* a += 1; b = a; */

1 for (i = 0; i < 5; ++i) { /* five times */ }

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 31 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 32 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 32 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 32 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 32 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 32 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 32 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

comma <expression> , <expression>

Operands are evaluated from left to right.
Value of first expression is thrown away.
Value and type of the entire expression is the value and type of
the second expression.

1 int step , j;
2 /* two -digit numbers with increasing step size */
3 for(step=1,j=10; j <100; j+=step , step ++)
4 printf("%d\n", j);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 33 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

comma <expression> , <expression>

Operands are evaluated from left to right.
Value of first expression is thrown away.
Value and type of the entire expression is the value and type of
the second expression.

1 int step , j;
2 /* two -digit numbers with increasing step size */
3 for(step=1,j=10; j <100; j+=step , step ++)
4 printf("%d\n", j);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 33 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

comma <expression> , <expression>

Operands are evaluated from left to right.
Value of first expression is thrown away.
Value and type of the entire expression is the value and type of
the second expression.

1 int step , j;
2 /* two -digit numbers with increasing step size */
3 for(step=1,j=10; j <100; j+=step , step ++)
4 printf("%d\n", j);

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 33 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

(ternary) conditional expr. <cond.> ? <expr.1> : <expr.2>

if <cond.> is true, then <expr.1>, otherwise <expr.2>.
only one of <expr.1> and <expr.2> is evaluated.
It does not subtitute the if statement.

1 a = a < 0 ? -a : a; /* determining absolute value */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 34 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Features of operations performed on data DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Precedence
If there are different operations, which is evaluated first?

1 int a = 2 + 3 * 4; /* 2 + (3 * 4) */

Associativity

If there are equivalent operations, which is evaluated first?
(Does it bind from left to right or from right to left?)

1 int b = 11 - 8 - 2; /* (11 - 8) - 2 */

Instead of memorizing the rules, use parentheses!

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 35 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Features of operations performed on data DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Precedence
If there are different operations, which is evaluated first?

1 int a = 2 + 3 * 4; /* 2 + (3 * 4) */

Associativity

If there are equivalent operations, which is evaluated first?
(Does it bind from left to right or from right to left?)

1 int b = 11 - 8 - 2; /* (11 - 8) - 2 */

Instead of memorizing the rules, use parentheses!

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 35 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Features of operations performed on data DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Precedence
If there are different operations, which is evaluated first?

1 int a = 2 + 3 * 4; /* 2 + (3 * 4) */

Associativity

If there are equivalent operations, which is evaluated first?
(Does it bind from left to right or from right to left?)

1 int b = 11 - 8 - 2; /* (11 - 8) - 2 */

Instead of memorizing the rules, use parentheses!

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 35 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

List of operators in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Operateors are listed top to bottom, in descending precedence
(operators in the same row have the same precedence)

1 () [] . -> /* highest */
2 ! ~ ++ -- + - * & (<type >) sizeof
3 * / %
4 + -
5 << >>
6 < <= > >=
7 == != /* forbidden to learn! */
8 & /* use parentheses! */
9 ^

10 |
11 &&
12 ||
13 ?:
14 = += -= *= /= %= &= ^= |= <<= >>=
15 , /* lowest */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 36 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Operators of C language DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Summarized
A lot of effective operators

Some operators have side effects that will occur during
evaluation
We always try to separate main and side effects
Instead of this:

1 t[++i] = func(c-=2);

we rather write this:
1 c -= 2; /* means the same */
2 ++i; /* not less effective */
3 t[i] = func(c); /* and I will understand it tomorrow too */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 37 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Operators of C language DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Summarized
A lot of effective operators
Some operators have side effects that will occur during
evaluation

We always try to separate main and side effects
Instead of this:

1 t[++i] = func(c-=2);

we rather write this:
1 c -= 2; /* means the same */
2 ++i; /* not less effective */
3 t[i] = func(c); /* and I will understand it tomorrow too */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 37 / 43

Structures Typedef Operators Type conversion Definitions Operators Prec.

Operators of C language DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Summarized
A lot of effective operators
Some operators have side effects that will occur during
evaluation
We always try to separate main and side effects
Instead of this:

1 t[++i] = func(c-=2);

we rather write this:
1 c -= 2; /* means the same */
2 ++i; /* not less effective */
3 t[i] = func(c); /* and I will understand it tomorrow too */

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 37 / 43

Structures Typedef Operators Type conversion

Chapter 4

Type conversion

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 38 / 43

Structures Typedef Operators Type conversion

What is that? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In some cases the C-program needs to convert the type of our
expressions.

1 long func(float f) {
2 return f;
3 }
4

5 int main(void) {
6 int i = 2;
7 short s = func(i);
8 return 0;
9 }

In this example: int → float → long → short

int → float rounding, if the number is large
float → long may cause overflow, rounding to integer
long → short may cause overflow

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 39 / 43

Structures Typedef Operators Type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle

preserve the value, if possible
In case of overflow

the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 40 / 43

Structures Typedef Operators Type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow

the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 40 / 43

Structures Typedef Operators Type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow

the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 40 / 43

Structures Typedef Operators Type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 40 / 43

Structures Typedef Operators Type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 40 / 43

Structures Typedef Operators Type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value

at calling a function (when actualising the formal parameters)
Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 40 / 43

Structures Typedef Operators Type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 40 / 43

Structures Typedef Operators Type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 40 / 43

Structures Typedef Operators Type conversion

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)
evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 40 / 43

Structures Typedef Operators Type conversion

Conversion with two operands DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The conversion of the two operands to the same, common type
happens according to these rules

operand one the other operand common, new type

long double anything long double

double anything double

float anything float

unsigned long anything unsigned long

long anything (int, unsigned) long

unsigned anything (int) unsigned

int anything (int) int

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 41 / 43

Structures Typedef Operators Type conversion

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0
2 3.0 ∗ 2.4 → 7.2
3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 42 / 43

Structures Typedef Operators Type conversion

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0

2 3.0 ∗ 2.4 → 7.2
3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 42 / 43

Structures Typedef Operators Type conversion

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0
2 3.0 ∗ 2.4 → 7.2

3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 42 / 43

Structures Typedef Operators Type conversion

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0
2 3.0 ∗ 2.4 → 7.2
3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 42 / 43

Structures Typedef Operators Type conversion

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Structures, Operators 14 October, 2020 43 / 43

	Structures
	Motivation
	Definition
	Assignment of value

	Typename-assignment
	Operators
	Definitions
	Operators
	Precedence

	Type conversion

