
Operators Type conversion Pointers

Operators – Pointers
Basics of Programming 1

DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

21 October, 2020

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 1 / 48

Operators Type conversion Pointers

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Operators
Definitions
Operators
Precedence

2 Type conversion

3 Pointers
Definition of pointers
Passing parameters as
address
Pointer-arithmetics
Pointers and arrays

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 2 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Chapter 1

Operators

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 3 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Operations DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Denoted with operators (special symbols)
They work with operands
They result a data with type

Polymorphic: have different behaviour on different operand
types

2.0 ↓ ↓ 3.0

0.6̇ ↓

/

2 ↓ ↓ 3

0 ↓

/

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 4 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Operations DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Denoted with operators (special symbols)
They work with operands
They result a data with type
Polymorphic: have different behaviour on different operand
types

2.0 ↓ ↓ 3.0

0.6̇ ↓

/

2 ↓ ↓ 3

0 ↓

/

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 4 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Expressions and operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Expressions

eg. 8 + 5 < -a - 2
Built up of constants, variable references and operations

<

+

8 5

13

-

-

a (3)

-3

2

-5

FALSE

by evaluating them the result is one data element with type.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 5 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Expressions and operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Expressions
eg. 8 + 5 < -a - 2

Built up of constants, variable references and operations

<

+

8 5

13

-

-

a (3)

-3

2

-5

FALSE

by evaluating them the result is one data element with type.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 5 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Expressions and operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Expressions
eg. 8 + 5 < -a - 2
Built up of constants, variable references and operations

<

+

8 5

13

-

-

a (3)

-3

2

-5

FALSE

by evaluating them the result is one data element with type.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 5 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Expressions and operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Expressions
eg. 8 + 5 < -a - 2
Built up of constants, variable references and operations

<

+

8 5

13

-

-

a (3)

-3

2

-5

FALSE

by evaluating them the result is one data element with type.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 5 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands

unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand

arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 6 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a

binary – with two operands
1+2

Considering the interpretation of the operand

arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 6 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand

arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 6 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand

arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 6 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand
arithmetic

relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 6 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand
arithmetic
relational

logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 6 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand
arithmetic
relational
logical

bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 6 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand
arithmetic
relational
logical
bitwise

misc

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 6 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Types of operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Considering the number of operands
unary – with one operand
-a
binary – with two operands
1+2

Considering the interpretation of the operand
arithmetic
relational
logical
bitwise
misc

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 6 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Arithmetic operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

unary plus +<expression>
unary minus -<expression>
addition <expression> + <expression>

subtraction <expression> - <expression>

multiplication <expression> * <expression>

division <expression> / <expression>
type of the result depends on type of the operands, if
both are integer, then it is an integer division
modulus <expression> % <expression>

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 7 / 48

Operators Type conversion Pointers Definitions Operators Prec.

True or false – Boolean in C (repeated) DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Every boolean like result is int type, and its value is
0, if false
1, if true

1 printf("%d\t%d", 2<3, 2==3);

1 0

A value interpreted as boolean is
false, if its value is represented with 0 bits only
true, if its value is represented with not only 0 bits

1 while (1) { /* infinite loop */ }
2 while (-3.0) { /* infinite loop */ }
3 while (0) { /* this here is never executed */ }

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 8 / 48

Operators Type conversion Pointers Definitions Operators Prec.

True or false – Boolean in C (repeated) DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Every boolean like result is int type, and its value is
0, if false
1, if true

1 printf("%d\t%d", 2<3, 2==3);

1 0

A value interpreted as boolean is
false, if its value is represented with 0 bits only
true, if its value is represented with not only 0 bits

1 while (1) { /* infinite loop */ }
2 while (-3.0) { /* infinite loop */ }
3 while (0) { /* this here is never executed */ }

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 8 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Relational operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

relational operators

<left value> < <expression>

<left value> <= <expression>

<left value> > <expression>

<left value> >= <expression>

checking equality <left value> == <expression>

checking non-equality <left value> != <expression>

They give logical value (int, 0 or 1) as result.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 9 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical NOT (complement) !<expression>

1 int a = 0x5c; /* 0101 1100, true */
2 int b = !a; /* 0000 0000, false */
3 int c = !b; /* 0000 0001, true */

Conlusion: !!a 6= a, only if we look at their boolean value.

1 int finish = 0;
2 while (! finish) {
3 int b;
4 scanf("%d", &b);
5 if (b == 0)
6 finish = 1;
7 }

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 10 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical NOT (complement) !<expression>

1 int a = 0x5c; /* 0101 1100, true */
2 int b = !a; /* 0000 0000, false */
3 int c = !b; /* 0000 0001, true */

Conlusion: !!a 6= a, only if we look at their boolean value.

1 int finish = 0;
2 while (! finish) {
3 int b;
4 scanf("%d", &b);
5 if (b == 0)
6 finish = 1;
7 }

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 10 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical AND <expression> && <expression>

logical OR <expression> || <expression>

Logical short-cut: Operands are evaluated from left to right. But
only until the result is not obvious.
We make use of this feature very often.

1 int a[5] = {1, 2, 3, 4, 5};
2 int i = 0;
3 while (i < 5 && a[i] < 20)
4 i = i+1; /* no over -indexing */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 11 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical AND <expression> && <expression>

logical OR <expression> || <expression>
Logical short-cut: Operands are evaluated from left to right. But
only until the result is not obvious.

We make use of this feature very often.

1 int a[5] = {1, 2, 3, 4, 5};
2 int i = 0;
3 while (i < 5 && a[i] < 20)
4 i = i+1; /* no over -indexing */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 11 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Logical operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

logical AND <expression> && <expression>

logical OR <expression> || <expression>
Logical short-cut: Operands are evaluated from left to right. But
only until the result is not obvious.
We make use of this feature very often.

1 int a[5] = {1, 2, 3, 4, 5};
2 int i = 0;
3 while (i < 5 && a[i] < 20)
4 i = i+1; /* no over -indexing */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 11 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Some more operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

We have used them so far, but never have called them operators
before.

operation syntax

function call <function>(<actual arguments>)
array reference <array>[<index>]
structure-reference <structure>.<member>

1 c = sin (3.2); /* () */
2 a[28] = 3; /* [] */
3 v.x = 2.0; /* . */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 12 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Operators with side effects DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Some operators have side effects
main effect: calculating the result of evaluation
side effect: the value of the operand is modified

Simple assignment operator =
In C language, assignment is an expression!
its side effect is the assignment (a is
modified)
its main effect is the new value of a

=

a 2

2

Because of its main effect, this is also meaningful:

1 int a;
2 int b = a = 2;

b is initialised with the value of expression a=2 (this also has a
side effect), and the side effect of it is that a is also modified.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 13 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Operators with side effects DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Some operators have side effects
main effect: calculating the result of evaluation
side effect: the value of the operand is modified

Simple assignment operator =
In C language, assignment is an expression!
its side effect is the assignment (a is
modified)
its main effect is the new value of a

=

a 2

2

Because of its main effect, this is also meaningful:

1 int a;
2 int b = a = 2;

b is initialised with the value of expression a=2 (this also has a
side effect), and the side effect of it is that a is also modified.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 13 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Operators with side effects DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Some operators have side effects
main effect: calculating the result of evaluation
side effect: the value of the operand is modified

Simple assignment operator =
In C language, assignment is an expression!
its side effect is the assignment (a is
modified)
its main effect is the new value of a

=

a 2

2

Because of its main effect, this is also meaningful:

1 int a;
2 int b = a = 2;

b is initialised with the value of expression a=2 (this also has a
side effect), and the side effect of it is that a is also modified.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 13 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Left-value DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Assignement operator modifies value of the left side operand.
There can be only ”modifiable entity” on the left side.

Left-value (lvalue)

An expression that can appear on the left side of the assignment.

As far as we know now, left-value can be
a variable reference a = 2
element of an array array[3] = 2
member of a structure v.x = 2
. . .

Examples for non-left-value expressions
constant 3 = 2 error
arithmetic expression a+4 = 2 error
logical expression a>3 = 2 error
function value sin(2.0) = 2 error

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 14 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Left-value DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Assignement operator modifies value of the left side operand.
There can be only ”modifiable entity” on the left side.

Left-value (lvalue)

An expression that can appear on the left side of the assignment.

As far as we know now, left-value can be
a variable reference a = 2
element of an array array[3] = 2
member of a structure v.x = 2
. . .

Examples for non-left-value expressions
constant 3 = 2 error
arithmetic expression a+4 = 2 error
logical expression a>3 = 2 error
function value sin(2.0) = 2 error

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 14 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Left-value DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Assignement operator modifies value of the left side operand.
There can be only ”modifiable entity” on the left side.

Left-value (lvalue)

An expression that can appear on the left side of the assignment.

As far as we know now, left-value can be
a variable reference a = 2
element of an array array[3] = 2
member of a structure v.x = 2
. . .

Examples for non-left-value expressions
constant 3 = 2 error
arithmetic expression a+4 = 2 error
logical expression a>3 = 2 error
function value sin(2.0) = 2 error

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 14 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Left-value DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Assignement operator modifies value of the left side operand.
There can be only ”modifiable entity” on the left side.

Left-value (lvalue)

An expression that can appear on the left side of the assignment.

As far as we know now, left-value can be
a variable reference a = 2
element of an array array[3] = 2
member of a structure v.x = 2
. . .

Examples for non-left-value expressions
constant 3 = 2 error
arithmetic expression a+4 = 2 error
logical expression a>3 = 2 error
function value sin(2.0) = 2 error

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 14 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */
2 /* generates a side effect */

As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 15 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */
2 /* generates a side effect */

As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 15 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */
2 /* generates a side effect */

As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 15 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */
2 /* generates a side effect */

As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 15 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Expression or statement? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An operation that has side effect can be a statement in a program.

Expression statement

<Expression>;

Expression is evaluated, but the result is thrown away (but all
side effects are completed).

1 a = 2 /* expression , its value is 2, it has side effect */

1 a = 2; /* statement , it has no value */
2 /* generates a side effect */

As the main effect is surpressed, there is no sense of making
expression statements if the expression has no side effect.

1 2 + 3; /* valid statement , it generates nothing */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 15 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Assignement operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

expression syntax

compound assignment

<left-value> += <expression>

<left-value> -= <expression>

<left-value> *= <expression>

<left-value> /= <expression>

<left-value> %= <expression>

Almost: <left-value>=<left-value><op><expression>

1 a += 2; /* a = a + 2; */
2 t[rand ()] += 2; /* NOT t[rand ()] = t[rand ()] + 2; */

Left-value is evaluated only once.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 16 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Assignement operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

expression syntax

compound assignment

<left-value> += <expression>

<left-value> -= <expression>

<left-value> *= <expression>

<left-value> /= <expression>

<left-value> %= <expression>

Almost: <left-value>=<left-value><op><expression>

1 a += 2; /* a = a + 2; */
2 t[rand ()] += 2; /* NOT t[rand ()] = t[rand ()] + 2; */

Left-value is evaluated only once.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 16 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators with side effects DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

expression syntax

post increment <left-value> ++
post decrement <left-value> --
it is increased/decreased by one after evaluation

pre increment ++<left-value>
pre decrement --<left-value>
it is increased/decreased by one before evaluation

1 b = a++; /* b = a; a += 1; */
2 b = ++a; /* a += 1; b = a; */

1 for (i = 0; i < 5; ++i) { /* five times */ }

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 17 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 18 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 18 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 18 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 18 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 18 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

modifying type
(<type>)<expression>

(casting)

size for storage (in bytes) sizeof <expression>

the expression is not evaluated

1 int a1=2, a2=3, storagesize;
2 double b;
3 b = a1/(double)a2;
4 storagesize = sizeof 3/a1;
5 storagesize = sizeof(double)a1;
6 storagesize = sizeof(double);

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 18 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

comma <expression> , <expression>

Operands are evaluated from left to right.
Value of first expression is thrown away.
Value and type of the entire expression is the value and type of
the second expression.

1 int step , j;
2 /* two -digit numbers with increasing step size */
3 for(step=1,j=10; j <100; j+=step , step ++)
4 printf("%d\n", j);

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 19 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

comma <expression> , <expression>

Operands are evaluated from left to right.
Value of first expression is thrown away.
Value and type of the entire expression is the value and type of
the second expression.

1 int step , j;
2 /* two -digit numbers with increasing step size */
3 for(step=1,j=10; j <100; j+=step , step ++)
4 printf("%d\n", j);

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 19 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

comma <expression> , <expression>

Operands are evaluated from left to right.
Value of first expression is thrown away.
Value and type of the entire expression is the value and type of
the second expression.

1 int step , j;
2 /* two -digit numbers with increasing step size */
3 for(step=1,j=10; j <100; j+=step , step ++)
4 printf("%d\n", j);

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 19 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Other operators DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operation syntax

(ternary) conditional expr. <cond.> ? <expr.1> : <expr.2>

if <cond.> is true, then <expr.1>, otherwise <expr.2>.
only one of <expr.1> and <expr.2> is evaluated.
It does not subtitute the if statement.

1 a = a < 0 ? -a : a; /* determining absolute value */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 20 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Features of operations performed on data DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Precedence
If there are different operations, which is evaluated first?

1 int a = 2 + 3 * 4; /* 2 + (3 * 4) */

Associativity

If there are equivalent operations, which is evaluated first?
(Does it bind from left to right or from right to left?)

1 int b = 11 - 8 - 2; /* (11 - 8) - 2 */

Instead of memorizing the rules, use parentheses!

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 21 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Features of operations performed on data DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Precedence
If there are different operations, which is evaluated first?

1 int a = 2 + 3 * 4; /* 2 + (3 * 4) */

Associativity

If there are equivalent operations, which is evaluated first?
(Does it bind from left to right or from right to left?)

1 int b = 11 - 8 - 2; /* (11 - 8) - 2 */

Instead of memorizing the rules, use parentheses!

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 21 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Features of operations performed on data DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Precedence
If there are different operations, which is evaluated first?

1 int a = 2 + 3 * 4; /* 2 + (3 * 4) */

Associativity

If there are equivalent operations, which is evaluated first?
(Does it bind from left to right or from right to left?)

1 int b = 11 - 8 - 2; /* (11 - 8) - 2 */

Instead of memorizing the rules, use parentheses!

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 21 / 48

Operators Type conversion Pointers Definitions Operators Prec.

List of operators in C DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Operateors are listed top to bottom, in descending precedence
(operators in the same row have the same precedence)

1 () [] . -> /* highest */
2 ! ~ ++ -- + - * & (<type >) sizeof
3 * / %
4 + -
5 << >>
6 < <= > >=
7 == != /* forbidden to learn! */
8 & /* use parentheses! */
9 ^

10 |
11 &&
12 ||
13 ?:
14 = += -= *= /= %= &= ^= |= <<= >>=
15 , /* lowest */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 22 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Operators of C language DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Summarized
A lot of effective operators

Some operators have side effects that will occur during
evaluation
We always try to separate main and side effects
Instead of this:

1 t[++i] = func(c-=2);

we rather write this:
1 c -= 2; /* means the same */
2 ++i; /* not less effective */
3 t[i] = func(c); /* and I will understand it tomorrow too */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 23 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Operators of C language DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Summarized
A lot of effective operators
Some operators have side effects that will occur during
evaluation

We always try to separate main and side effects
Instead of this:

1 t[++i] = func(c-=2);

we rather write this:
1 c -= 2; /* means the same */
2 ++i; /* not less effective */
3 t[i] = func(c); /* and I will understand it tomorrow too */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 23 / 48

Operators Type conversion Pointers Definitions Operators Prec.

Operators of C language DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Summarized
A lot of effective operators
Some operators have side effects that will occur during
evaluation
We always try to separate main and side effects
Instead of this:

1 t[++i] = func(c-=2);

we rather write this:
1 c -= 2; /* means the same */
2 ++i; /* not less effective */
3 t[i] = func(c); /* and I will understand it tomorrow too */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 23 / 48

Operators Type conversion Pointers

Chapter 2

Type conversion

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 24 / 48

Operators Type conversion Pointers

What is that? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In some cases the C-program needs to convert the type of our
expressions.

1 long func(float f) {
2 return f;
3 }
4

5 int main(void) {
6 int i = 2;
7 short s = func(i);
8 return 0;
9 }

In this example: int → float → long → short

int → float rounding, if the number is large
float → long may cause overflow, rounding to integer
long → short may cause overflow

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 25 / 48

Operators Type conversion Pointers

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle

preserve the value, if possible
In case of overflow

the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 26 / 48

Operators Type conversion Pointers

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow

the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 26 / 48

Operators Type conversion Pointers

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow

the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 26 / 48

Operators Type conversion Pointers

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 26 / 48

Operators Type conversion Pointers

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)

at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 26 / 48

Operators Type conversion Pointers

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value

at calling a function (when actualising the formal parameters)
Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 26 / 48

Operators Type conversion Pointers

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 26 / 48

Operators Type conversion Pointers

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)

evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 26 / 48

Operators Type conversion Pointers

Converting types DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Basic principle
preserve the value, if possible

In case of overflow
the result is theoretically undefined

Conversion with one operand (we have seen that)
at assignment of value
at calling a function (when actualising the formal parameters)

Conversion with two operands (eg. 2/3.4)
evaluating an operation

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 26 / 48

Operators Type conversion Pointers

Conversion with two operands DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The conversion of the two operands to the same, common type
happens according to these rules

operand one the other operand common, new type

long double anything long double

double anything double

float anything float

unsigned long anything unsigned long

long anything (int, unsigned) long

unsigned anything (int) unsigned

int anything (int) int

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 27 / 48

Operators Type conversion Pointers

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0
2 3.0 ∗ 2.4 → 7.2
3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 28 / 48

Operators Type conversion Pointers

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0

2 3.0 ∗ 2.4 → 7.2
3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 28 / 48

Operators Type conversion Pointers

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0
2 3.0 ∗ 2.4 → 7.2

3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 28 / 48

Operators Type conversion Pointers

Type conversions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Example for conversion

1 int a = 3;
2 double b = 2.4;
3 a = a*b;

1 3 → 3.0
2 3.0 ∗ 2.4 → 7.2
3 7.2 → 7

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 28 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Chapter 3

Pointers

Fundamental Theorem of Software Engineering (FTSE)

“We can solve any problem
by introducing an extra level of indirection.”

Andrew Koenig

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 29 / 48

http://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Where are the variables? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a program that lists the address and value of variables

1 int a = 2;
2 double b = 8.0;
3 printf("address of a: %p, its value: %d\n", &a, a);
4 printf("address of b: %p, its value: %f\n", &b, b);

address of a: 0x7fffa3a4225c, its value: 2
address of b: 0x7fffa3a42250, its value: 8.000000

address of variable: starting address of ”memory block”
containing the variable, expressed in bytes
with the address-of operator we can create address of any
variables1 like this &<reference>

1more precisely left-values
© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 30 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Where are the variables? DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s write a program that lists the address and value of variables

1 int a = 2;
2 double b = 8.0;
3 printf("address of a: %p, its value: %d\n", &a, a);
4 printf("address of b: %p, its value: %f\n", &b, b);

address of a: 0x7fffa3a4225c, its value: 2
address of b: 0x7fffa3a42250, its value: 8.000000

address of variable: starting address of ”memory block”
containing the variable, expressed in bytes
with the address-of operator we can create address of any
variables1 like this &<reference>

1more precisely left-values
© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 30 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

The pointer type DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The pointer type is for storing memory addresses

Declaration of pointer

<pointed type> * <identifier>;

1 int* p; /* p stores the address of one int data */
2 double* q; /* q stores the address of one double data */
3 char* r; /* r stores the address of one char data */

it is the same, even if arranged in a different way

1 int *p; /* p stores the address of one int data */
2 double *q; /* q stores the address of one double data */
3 char *r; /* r stores the address of one char data */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 31 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

The pointer type DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The pointer type is for storing memory addresses

Declaration of pointer

<pointed type> * <identifier>;

1 int* p; /* p stores the address of one int data */
2 double* q; /* q stores the address of one double data */
3 char* r; /* r stores the address of one char data */

it is the same, even if arranged in a different way

1 int *p; /* p stores the address of one int data */
2 double *q; /* q stores the address of one double data */
3 char *r; /* r stores the address of one char data */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 31 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”

If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: ?? 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: ?? 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: ?? 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: ?? 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: ?? 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: 3 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: 3 0x1004

p: ????

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: 3 0x1004

p:0x1000

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 2 0x1000

b: 3 0x1004

p:0x1000

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 4 0x1000

b: 3 0x1004

p:0x1000

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 4 0x1000

b: 3 0x1004

p:0x1000

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 4 0x1000

b: 3 0x1004

p:0x1004

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 4 0x1000

b: 3 0x1004

p:0x1004

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Operator of indirection DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If pointer p stores the address of variable a, then
p ”points to a”
If p points to a, then variable a can be accessed as *p.
Here * is the operator of indirection (dereference operator).

1 int a, b;
2 int *p; /* int pointer */
3

4 a = 2;
5 b = 3;
6 p = &a; /* p points to a */
7 *p = 4; /* a = 4 */
8 p = &b; /* p points to b */
9 *p = 5; /* b = 5 */

a: 4 0x1000

b: 5 0x1004

p:0x1004

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 32 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Address-of and indirection – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operator operation description

& address-of assigns its address to the variable

* indirection assigns variable to the address

Interpreting declaration: type of *p is int

1 int *p; /* get used to this version */

Multiple declaration: type of a, *p and *q is int

1 int a, *p, *q; /* at least because of this */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 33 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Address-of and indirection – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operator operation description

& address-of assigns its address to the variable

* indirection assigns variable to the address

Interpreting declaration: type of *p is int

1 int *p; /* get used to this version */

Multiple declaration: type of a, *p and *q is int

1 int a, *p, *q; /* at least because of this */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 33 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Address-of and indirection – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

operator operation description

& address-of assigns its address to the variable

* indirection assigns variable to the address

Interpreting declaration: type of *p is int

1 int *p; /* get used to this version */

Multiple declaration: type of a, *p and *q is int

1 int a, *p, *q; /* at least because of this */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 33 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

????0x1FF8:
????0x1FF4:
????0x1FF0:
????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

????0x1FF8:
????0x1FF4:
????0x1FF0:
????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
30x1FF8:
20x1FF4:
150x1FF0:

????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
3y 0x1FF8:
2x 0x1FF4:
150x1FF0:

????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
3y 0x1FF8:
2x 0x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
3y 0x1FF8:
3x 0x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
2y 0x1FF8:
3x 0x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
2y 0x1FF8:
3x 0x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
20x1FF8:
30x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:
20x1FF8:
30x1FF4:
150x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

0x1FFC0x1FF8:
0x20000x1FF4:
160x1FF0:

????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

0x1FFC0x1FF8:
0x20000x1FF4:
160x1FF0:

????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

0x1FFCpy 0x1FF8:
0x2000px 0x1FF4:
160x1FF0:

????tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

2a 0x2000:
3b 0x1FFC:

0x1FFCpy 0x1FF8:
0x2000px 0x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

3a 0x2000:
3b 0x1FFC:

0x1FFCpy 0x1FF8:
0x2000px 0x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

3a 0x2000:
2b 0x1FFC:

0x1FFCpy 0x1FF8:
0x2000px 0x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

3a 0x2000:
2b 0x1FFC:

0x1FFCpy 0x1FF8:
0x2000px 0x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

3a 0x2000:
2b 0x1FFC:

0x1FFC0x1FF8:
0x20000x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

3a 0x2000:
2b 0x1FFC:

0x1FFC0x1FF8:
0x20000x1FF4:
160x1FF0:
2tmp 0x1FEC:

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – Function for exchanging two variables DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void xchg(int x, int y) {
2 int tmp = x;
3 x = y;
4 y = tmp;
5 }
6

7 void xchgp(int *px, int *py) {
8 int tmp = *px;
9 *px = *py;

10 *py = tmp;
11 }
12

13 int main(void) {
14 int a = 2, b = 3;
15 xchg(a, b);

/* NO exchange */
16 xchgp(&a, &b);/* exchange */
17 return 0;
18 }

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 34 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – returning value as parameter DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If a function has to calculate several values, then. . .
. . . we can use structures, but sometimes this seems rather
unnecessary.

Instead. . .

1 int inverse(double x, double *py)
2 {
3 if (abs(x) < 1e-10) return 0;
4 *py = 1.0 / x;
5 return 1;
6 } link x

y

1 double y; /* memory allocation for result */
2 if (inverse (5.0, &y) == 1)
3 printf("Reciprocal of %f is %f\n", 5.0, y);
4 else
5 printf("Reciprocal does not exist"); link

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 35 / 48

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/inverse.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/inverse.c

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – returning value as parameter DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If a function has to calculate several values, then. . .
. . . we can use structures, but sometimes this seems rather
unnecessary.
Instead. . .

1 int inverse(double x, double *py)
2 {
3 if (abs(x) < 1e-10) return 0;
4 *py = 1.0 / x;
5 return 1;
6 } link x

y

1 double y; /* memory allocation for result */
2 if (inverse (5.0, &y) == 1)
3 printf("Reciprocal of %f is %f\n", 5.0, y);
4 else
5 printf("Reciprocal does not exist"); link

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 35 / 48

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/inverse.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/inverse.c

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – returning value as parameter DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If a function has to calculate several values, then. . .
. . . we can use structures, but sometimes this seems rather
unnecessary.
Instead. . .

1 int inverse(double x, double *py)
2 {
3 if (abs(x) < 1e-10) return 0;
4 *py = 1.0 / x;
5 return 1;
6 } link x

y

1 double y; /* memory allocation for result */
2 if (inverse (5.0, &y) == 1)
3 printf("Reciprocal of %f is %f\n", 5.0, y);
4 else
5 printf("Reciprocal does not exist"); link

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 35 / 48

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/inverse.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/inverse.c

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Application – return values as parameters DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Now we understand what this means
1 int n, p;
2 /* return value as parameter */
3 scanf("%d%d", &n, &p); /* we pass the addresses */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 36 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Remarks: DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

What is the use of having different pointer types for different
types?

Type = set of values + operations
Obviously set of values is the same for all pointers (unsigned
integer addresses)
Operations are different!
The operator of indirection (*)

makes int from int pointer
makes char from char pointer

Other differences are detailed in pointer-arithmetics. . .

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 37 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Remarks: DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

What is the use of having different pointer types for different
types?
Type = set of values + operations
Obviously set of values is the same for all pointers (unsigned
integer addresses)
Operations are different!

The operator of indirection (*)
makes int from int pointer
makes char from char pointer

Other differences are detailed in pointer-arithmetics. . .

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 37 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Remarks: DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

What is the use of having different pointer types for different
types?
Type = set of values + operations
Obviously set of values is the same for all pointers (unsigned
integer addresses)
Operations are different!
The operator of indirection (*)

makes int from int pointer
makes char from char pointer

Other differences are detailed in pointer-arithmetics. . .

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 37 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Remarks: DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

What is the use of having different pointer types for different
types?
Type = set of values + operations
Obviously set of values is the same for all pointers (unsigned
integer addresses)
Operations are different!
The operator of indirection (*)

makes int from int pointer
makes char from char pointer

Other differences are detailed in pointer-arithmetics. . .

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 37 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p: ????

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p: ????

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p: ????

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1004

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1004

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q: ????

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q:0x1008

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q:0x1008

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q:0x1008

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetics DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

If p and q are pointers of the same type, then

expr. type meaning

p+1 pointer points to the next element

p-1 pointer points to the previous element

q-p integer number number of elements between two addresses

1 int a, *p, *q;
2

3 p = &a;
4 p = p-1;
5 q = p+2;
6 printf("%d", q-p);

2

?? 0x1000
a: ?? 0x1004

?? 0x1008p:0x1000

q:0x1008

At pointer-arithmetic operaitons addresses are ”measured” in
the representation size of the pointed type, and not in bytes.2

2In this example we assume that size of int is 4 bytes

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 38 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointer-arithmetic DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

In the above example pointer-arithmetic is strange, as we don’t
know what is before or after variable a in the memory.
This operation is meaningful, when we have variables of the
same type, stored in the memory one afte the other.
This is the case for arrays.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 39 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing an array can be done with pointer-arithmetics.

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", *(p+i));

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example *(p+i) is the same as t[i], because
p points to the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 40 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing an array can be done with pointer-arithmetics.

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", *(p+i));

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example *(p+i) is the same as t[i], because
p points to the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 40 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Traversing an array can be done with pointer-arithmetics.

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", *(p+i));

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example *(p+i) is the same as t[i], because
p points to the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 40 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointers can be taken as arrays, this means they can be
indexed.
By definition p[i] is identical to *(p+i)

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example p[i] is the same as t[i], because p points to
the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 41 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointers can be taken as arrays, this means they can be
indexed.
By definition p[i] is identical to *(p+i)

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example p[i] is the same as t[i], because p points to
the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 41 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointers can be taken as arrays, this means they can be
indexed.
By definition p[i] is identical to *(p+i)

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = &t[0];
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

In this example p[i] is the same as t[i], because p points to
the beginning of array t

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 41 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Arrays can be taken as pointers.
The identifier (name) of array is the starting address of the
array, in other words the value of expression t is &t[0]

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = t; /* &t[0] */
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

Pointer-arithmetics work for arrays too:
t+i is identical to &t[i]

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 42 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Arrays can be taken as pointers.
The identifier (name) of array is the starting address of the
array, in other words the value of expression t is &t[0]

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = t; /* &t[0] */
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

Pointer-arithmetics work for arrays too:
t+i is identical to &t[i]

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 42 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Arrays can be taken as pointers.
The identifier (name) of array is the starting address of the
array, in other words the value of expression t is &t[0]

1 int t[5] = {1,4,2,7,3};
2 int *p, i;
3

4 p = t; /* &t[0] */
5 for (i = 0; i < 5; ++i)
6 printf("%d ", p[i]);

1 4 2 7 3

t[0]: 1 0x1000
t[1]: 4 0x1004
t[2]: 2 0x1008
t[3]: 7 0x100C
t[4]: 3 0x1010

p:0x1000

Pointer-arithmetics work for arrays too:
t+i is identical to &t[i]

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 42 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointer can be taken as array, and array as a pointer.

index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.
Differences:

Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.
Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

1 int array [5] = {1, 3, 2, 4, 7};
2 int *p = array;
3

4 /* the elements can be accessed via p and a */
5 p[0] = 2; array [0] = 2;
6 *p = 2; *array = 2;
7

8 /* p can be changed array CANNOT */
9 p = p+1; /* ok */ array = array + 1; /* ERROR */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 43 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointer can be taken as array, and array as a pointer.
index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.

Differences:
Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.
Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

1 int array [5] = {1, 3, 2, 4, 7};
2 int *p = array;
3

4 /* the elements can be accessed via p and a */
5 p[0] = 2; array [0] = 2;
6 *p = 2; *array = 2;
7

8 /* p can be changed array CANNOT */
9 p = p+1; /* ok */ array = array + 1; /* ERROR */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 43 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointer can be taken as array, and array as a pointer.
index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.
Differences:

Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.

Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

1 int array [5] = {1, 3, 2, 4, 7};
2 int *p = array;
3

4 /* the elements can be accessed via p and a */
5 p[0] = 2; array [0] = 2;
6 *p = 2; *array = 2;
7

8 /* p can be changed array CANNOT */
9 p = p+1; /* ok */ array = array + 1; /* ERROR */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 43 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointer can be taken as array, and array as a pointer.
index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.
Differences:

Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.
Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

1 int array [5] = {1, 3, 2, 4, 7};
2 int *p = array;
3

4 /* the elements can be accessed via p and a */
5 p[0] = 2; array [0] = 2;
6 *p = 2; *array = 2;
7

8 /* p can be changed array CANNOT */
9 p = p+1; /* ok */ array = array + 1; /* ERROR */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 43 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Pointers and arrays – summary DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Pointer can be taken as array, and array as a pointer.
index operator is only a notation
the compiler will always replace a[i] with *(a+i),
both if a is pointer, and also if a is array.
Differences:

Elements of array have allocated space in memory (variables).
No allocated elements belong to the pointer.
Starting address of array is constant, it cannot be changed.
Pointer is a variable, the address stored in it can be modified.

1 int array [5] = {1, 3, 2, 4, 7};
2 int *p = array;
3

4 /* the elements can be accessed via p and a */
5 p[0] = 2; array [0] = 2;
6 *p = 2; *array = 2;
7

8 /* p can be changed array CANNOT */
9 p = p+1; /* ok */ array = array + 1; /* ERROR */

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 43 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s use a function to determine the first negative element of
array!

Passing an array:
Address of first element double*
Size of the array typedef unsigned int size_t3

1 double first_negative(double *array , size_t size)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i) /* for each elems. */
5 if (array[i] < 0.0)
6 return array[i];
7

8 return 0; /* all are non -negative */
9 } link

1 double myarray [3] = {3.0, 1.0, -2.0};
2 double neg = first_negative(myarray , 3); link

3defined in stdio.h
© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 44 / 48

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative.c

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s use a function to determine the first negative element of
array!
Passing an array:

Address of first element double*
Size of the array typedef unsigned int size_t3

1 double first_negative(double *array , size_t size)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i) /* for each elems. */
5 if (array[i] < 0.0)
6 return array[i];
7

8 return 0; /* all are non -negative */
9 } link

1 double myarray [3] = {3.0, 1.0, -2.0};
2 double neg = first_negative(myarray , 3); link

3defined in stdio.h
© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 44 / 48

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative.c

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s use a function to determine the first negative element of
array!
Passing an array:

Address of first element double*
Size of the array typedef unsigned int size_t3

1 double first_negative(double *array , size_t size)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i) /* for each elems. */
5 if (array[i] < 0.0)
6 return array[i];
7

8 return 0; /* all are non -negative */
9 } link

1 double myarray [3] = {3.0, 1.0, -2.0};
2 double neg = first_negative(myarray , 3); link
3defined in stdio.h

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 44 / 48

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative.c
http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative.c

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

To distinguish arrays and pointers in the parameter list, we can
use the array-notation when passing an array.

1 double first_negative(double array[], size_t size)
2 /* (double *array , size_t size) */
3 {
4 ...
5 }

In the formal parameter list double a[] is
identical to double *a.
In the formal parameter list we can use only empty [], and
size should be passed as a separate parameter!

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 45 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

To distinguish arrays and pointers in the parameter list, we can
use the array-notation when passing an array.

1 double first_negative(double array[], size_t size)
2 /* (double *array , size_t size) */
3 {
4 ...
5 }

In the formal parameter list double a[] is
identical to double *a.
In the formal parameter list we can use only empty [], and
size should be passed as a separate parameter!

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 45 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s use a function to determine the first negative element of
array!
The return value should be the address of the element found.

1 double *first_negative(double *array , size_t size)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i) /* for each elems. */
5 if (array[i] < 0.0)
6 return &array[i];
7

8 return NULL; /* all are non -negative */
9 } link

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 46 / 48

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative_ptr.c

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Passing arrays to functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let’s use a function to determine the first negative element of
array!
The return value should be the address of the element found.

1 double *first_negative(double *array , size_t size)
2 {
3 size_t i;
4 for (i = 0; i < size; ++i) /* for each elems. */
5 if (array[i] < 0.0)
6 return &array[i];
7

8 return NULL; /* all are non -negative */
9 } link

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 46 / 48

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect06/src/firstnegative_ptr.c

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Null pointer DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The null pointer (NULL)

It stores the 0x0000 address
Agreed that it ”points to nowhere”

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 47 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Null pointer DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The null pointer (NULL)
It stores the 0x0000 address

Agreed that it ”points to nowhere”

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 47 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Null pointer DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

The null pointer (NULL)
It stores the 0x0000 address
Agreed that it ”points to nowhere”

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 47 / 48

Operators Type conversion Pointers Def. Func.param. Arithmetics Arrays

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Operators. Pointers 21 October, 2020 48 / 48

	Operators
	Definitions
	Operators
	Precedence

	Type conversion
	Pointers
	Definition of pointers
	Passing parameters as address
	Pointer-arithmetics
	Pointers and arrays

