
Binary trees

Binary trees
Basics of Programming 1

Department of Networked Systems and Services
G. Horváth, A.B. Nagy, Z. Zsóka, P. Fiala, A. Vitéz

2 December, 2020

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 1 / 21



Binary trees

Content DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 Binary trees
Definition
Binary search trees

Traversal
Deleting
Further applications

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 2 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Chapter 1

Binary trees

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 3 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

root

K = 1 (linked list)

root

K = 2 (binary tree)

An acyclic graph
Every node has exactly one incoming edge
K -ary tree: every node has at most K outgoing edges

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 4 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

root

Declaration of the binary tree data structure
1 typedef struct tree {
2 int data;
3 struct tree *left , *right;
4 } tree_elem , *tree_ptr; link

Typically we typedef not only the struct, but also the pointer
© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 5 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

28

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

28

42

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12 28

42

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12 28

42

35

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

42

35

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

42

35 48

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

30

42

35 48

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

30

42

35

33

48

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 6 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Searching an element in the tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root
1 tree_ptr find(tree_ptr root ,
2 int data)
3 {
4 while (root != NULL &&
5 data != root ->data)
6 {
7 if (data < root ->data)
8 root = root ->left;
9 else

10 root = root ->right;
11 }
12 return root;
13 } link

This is not recursive yet
In a depth-d tree the max. number of steps is d
If the tree is balanced and has n elements ⇒≈ log2 n steps!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 7 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

Searching an element in the tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root
1 tree_ptr find(tree_ptr root ,
2 int data)
3 {
4 while (root != NULL &&
5 data != root ->data)
6 {
7 if (data < root ->data)
8 root = root ->left;
9 else

10 root = root ->right;
11 }
12 return root;
13 } link

This is not recursive yet

In a depth-d tree the max. number of steps is d
If the tree is balanced and has n elements ⇒≈ log2 n steps!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 7 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

Searching an element in the tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root
1 tree_ptr find(tree_ptr root ,
2 int data)
3 {
4 while (root != NULL &&
5 data != root ->data)
6 {
7 if (data < root ->data)
8 root = root ->left;
9 else

10 root = root ->right;
11 }
12 return root;
13 } link

This is not recursive yet
In a depth-d tree the max. number of steps is d

If the tree is balanced and has n elements ⇒≈ log2 n steps!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 7 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

Searching an element in the tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root
1 tree_ptr find(tree_ptr root ,
2 int data)
3 {
4 while (root != NULL &&
5 data != root ->data)
6 {
7 if (data < root ->data)
8 root = root ->left;
9 else

10 root = root ->right;
11 }
12 return root;
13 } link

This is not recursive yet
In a depth-d tree the max. number of steps is d
If the tree is balanced and has n elements ⇒≈ log2 n steps!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 7 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

In-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void inorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 inorder(root ->left);
6 printf("%d ", root ->data);
7 inorder(root ->right);
8 }

11

in-order traversal
1 left sub-tree
2 root element
3 right sub-tree

With this traversal the nodes are visited
in increasing order of their values

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 8 / 21



Binary trees Def SearchTree Traversal Deleting Applications

In-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void inorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 inorder(root ->left);
6 printf("%d ", root ->data);
7 inorder(root ->right);
8 }

11 12 25 26 28 30

in-order traversal
1 left sub-tree
2 root element
3 right sub-tree

With this traversal the nodes are visited
in increasing order of their values

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 8 / 21



Binary trees Def SearchTree Traversal Deleting Applications

In-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void inorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 inorder(root ->left);
6 printf("%d ", root ->data);
7 inorder(root ->right);
8 }

11 12 25 26 28 30 31

in-order traversal
1 left sub-tree
2 root element
3 right sub-tree

With this traversal the nodes are visited
in increasing order of their values

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 8 / 21



Binary trees Def SearchTree Traversal Deleting Applications

In-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void inorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 inorder(root ->left);
6 printf("%d ", root ->data);
7 inorder(root ->right);
8 }

11 12 25 26 28 30 31 33 35 42 48

in-order traversal
1 left sub-tree
2 root element
3 right sub-tree

With this traversal the nodes are visited
in increasing order of their values

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 8 / 21



Binary trees Def SearchTree Traversal Deleting Applications

In-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void inorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 inorder(root ->left);
6 printf("%d ", root ->data);
7 inorder(root ->right);
8 }

11 12 25 26 28 30 31 33 35 42 48

in-order traversal
1 left sub-tree
2 root element
3 right sub-tree

With this traversal the nodes are visited
in increasing order of their values

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 8 / 21



Binary trees Def SearchTree Traversal Deleting Applications

In-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An other implementation of the in-order traversal:

1 void inorder(tree_ptr root)
2 {
3 if (root ->left != NULL)
4 inorder(root ->left);
5 printf("%d ", root ->data);
6 if (root ->right != NULL)
7 inorder(root ->right);
8 }

But in this case the caller has not make sure that root != NULL
holds

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 9 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Pre-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void preorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 printf("%d ", root ->data);
6 preorder(root ->left);
7 preorder(root ->right);
8 }

31

pre-order traversal
1 root element
2 left sub-tree
3 right sub-tree

Saving the elements of the tree in this
order, and building it again, the
structure of the tree can be fully
reconstructed.

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 10 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Pre-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void preorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 printf("%d ", root ->data);
6 preorder(root ->left);
7 preorder(root ->right);
8 }

31

pre-order traversal
1 root element
2 left sub-tree
3 right sub-tree

Saving the elements of the tree in this
order, and building it again, the
structure of the tree can be fully
reconstructed.

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 10 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Pre-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void preorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 printf("%d ", root ->data);
6 preorder(root ->left);
7 preorder(root ->right);
8 }

31 25 12 11 28 26 30

pre-order traversal
1 root element
2 left sub-tree
3 right sub-tree

Saving the elements of the tree in this
order, and building it again, the
structure of the tree can be fully
reconstructed.

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 10 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Pre-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void preorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 printf("%d ", root ->data);
6 preorder(root ->left);
7 preorder(root ->right);
8 }

31 25 12 11 28 26 30 42 35 33 48

pre-order traversal
1 root element
2 left sub-tree
3 right sub-tree

Saving the elements of the tree in this
order, and building it again, the
structure of the tree can be fully
reconstructed.

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 10 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Pre-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void preorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 printf("%d ", root ->data);
6 preorder(root ->left);
7 preorder(root ->right);
8 }

31 25 12 11 28 26 30 42 35 33 48

pre-order traversal
1 root element
2 left sub-tree
3 right sub-tree

Saving the elements of the tree in this
order, and building it again, the
structure of the tree can be fully
reconstructed.

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 10 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Building a tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Inserting a new node to the tree
1 tree_ptr insert(tree_ptr root , int data)
2 {
3 if (root == NULL) {
4 root = (tree_ptr)malloc(sizeof(tree_elem ));
5 root ->data = data;
6 }
7 else if (data < root ->data)
8 root ->left = insert(root ->left , data);
9 else

10 root ->right = insert(root ->right , data);
11 return root;
12 } link

Usage of this function:
1 tree_ptr root = NULL;
2 root = insert(root , 2);
3 root = insert(root , 8);
4 ...

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 11 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

Building a tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Inserting a new node to the tree
1 tree_ptr insert(tree_ptr root , int data)
2 {
3 if (root == NULL) {
4 root = (tree_ptr)malloc(sizeof(tree_elem ));
5 root ->data = data;
6 }
7 else if (data < root ->data)
8 root ->left = insert(root ->left , data);
9 else

10 root ->right = insert(root ->right , data);
11 return root;
12 } link

Usage of this function:
1 tree_ptr root = NULL;
2 root = insert(root , 2);
3 root = insert(root , 8);
4 ...

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 11 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

Post-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void postorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 postorder(root ->left);
6 postorder(root ->right);
7 printf("%d ", root ->data);
8 }

31

post-order traversal
1 left sub-tree
2 right sub-tree
3 root element

In this order the leaves of the tree are
visited first → application:
releasing/deleting a tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 12 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Post-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void postorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 postorder(root ->left);
6 postorder(root ->right);
7 printf("%d ", root ->data);
8 }

11 12 26 30 28 25

post-order traversal
1 left sub-tree
2 right sub-tree
3 root element

In this order the leaves of the tree are
visited first → application:
releasing/deleting a tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 12 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Post-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void postorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 postorder(root ->left);
6 postorder(root ->right);
7 printf("%d ", root ->data);
8 }

11 12 26 30 28 25 33 35 48 42

post-order traversal
1 left sub-tree
2 right sub-tree
3 root element

In this order the leaves of the tree are
visited first → application:
releasing/deleting a tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 12 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Post-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void postorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 postorder(root ->left);
6 postorder(root ->right);
7 printf("%d ", root ->data);
8 }

11 12 26 30 28 25 33 35 48 42 31

post-order traversal
1 left sub-tree
2 right sub-tree
3 root element

In this order the leaves of the tree are
visited first → application:
releasing/deleting a tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 12 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Post-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void postorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 postorder(root ->left);
6 postorder(root ->right);
7 printf("%d ", root ->data);
8 }

11 12 26 30 28 25 33 35 48 42 31

post-order traversal
1 left sub-tree
2 right sub-tree
3 root element

In this order the leaves of the tree are
visited first → application:
releasing/deleting a tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 12 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Post-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

25

12

11

28

26 30

42

35

33

48

root

1 void postorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 postorder(root ->left);
6 postorder(root ->right);
7 printf("%d ", root ->data);
8 }

11 12 26 30 28 25 33 35 48 42 31

post-order traversal
1 left sub-tree
2 right sub-tree
3 root element

In this order the leaves of the tree are
visited first → application:
releasing/deleting a tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 12 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Deleting a tree by post-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void delete(tree_ptr root)
2 {
3 if (root == NULL) /* empty tree: nothing to delete */
4 return;
5 delete(root ->left); /* post -order traversal */
6 delete(root ->right);
7 free(root);
8 } link

A program segment (without memory leaks):

1 tree_ptr root = NULL;
2 root = insert(root , 2);
3 root = insert(root , 8);
4 ...
5 delete(root);
6 root = NULL;

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 13 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

Deleting a tree by post-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void delete(tree_ptr root)
2 {
3 if (root == NULL) /* empty tree: nothing to delete */
4 return;
5 delete(root ->left); /* post -order traversal */
6 delete(root ->right);
7 free(root);
8 } link

A program segment (without memory leaks):

1 tree_ptr root = NULL;
2 root = insert(root , 2);
3 root = insert(root , 8);
4 ...
5 delete(root);
6 root = NULL;

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 13 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

Simple algorithms on binary trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Write a recursive function (max. 10 lines), that

determines the depth of a tree
calculates the count / the sum / the average of the values
stored in the nodes of the tree

Write a iterative function (max. 10 lines), that

computes the minimum and the maximum of the values stored
in the nodes
returns the pointer to the node storing the maximal / minimal
value of the tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 14 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Simple algorithms on binary trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Write a recursive function (max. 10 lines), that
determines the depth of a tree

calculates the count / the sum / the average of the values
stored in the nodes of the tree

Write a iterative function (max. 10 lines), that

computes the minimum and the maximum of the values stored
in the nodes
returns the pointer to the node storing the maximal / minimal
value of the tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 14 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Simple algorithms on binary trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Write a recursive function (max. 10 lines), that
determines the depth of a tree
calculates the count / the sum / the average of the values
stored in the nodes of the tree

Write a iterative function (max. 10 lines), that

computes the minimum and the maximum of the values stored
in the nodes
returns the pointer to the node storing the maximal / minimal
value of the tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 14 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Simple algorithms on binary trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Write a recursive function (max. 10 lines), that
determines the depth of a tree
calculates the count / the sum / the average of the values
stored in the nodes of the tree

Write a iterative function (max. 10 lines), that

computes the minimum and the maximum of the values stored
in the nodes
returns the pointer to the node storing the maximal / minimal
value of the tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 14 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Simple algorithms on binary trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Write a recursive function (max. 10 lines), that
determines the depth of a tree
calculates the count / the sum / the average of the values
stored in the nodes of the tree

Write a iterative function (max. 10 lines), that
computes the minimum and the maximum of the values stored
in the nodes

returns the pointer to the node storing the maximal / minimal
value of the tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 14 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Simple algorithms on binary trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Write a recursive function (max. 10 lines), that
determines the depth of a tree
calculates the count / the sum / the average of the values
stored in the nodes of the tree

Write a iterative function (max. 10 lines), that
computes the minimum and the maximum of the values stored
in the nodes
returns the pointer to the node storing the maximal / minimal
value of the tree

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 14 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Deleting an element from a search tree – naively DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

9

4

2

1 3

7

5

6

8

10

9

7

5

2

1 3

6

8

10

The right sub-tree is moved to the place of the deleted node
The left sub-tree is inserted to below the minimal element of
the right sub-tree

The tree is getting imbalanced!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 15 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Deleting an element from a search tree – naively DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

9

4

2

1 3

7

5

6

8

10

9

7

5

2

1 3

6

8

10

The right sub-tree is moved to the place of the deleted node
The left sub-tree is inserted to below the minimal element of
the right sub-tree
The tree is getting imbalanced!

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 15 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Deleting an element from a search tree – clever DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

9

4

2

1 3

7

5

6

8

10

9

5

2

1 3

7

6 8

10

The minimal element of the right sub-tree is moved to the
place of the deleted node
This element could have only a right sub-tree, it is moved one
level up, to its old place

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 16 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Morse decoding tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

E

I

S

H V

U

F Ü

•

A

R

L Ä

W

P J

–

•

T

N

D

B X

K

C Y

•

M

G

Z Q

O

Ö

–

–

SOSOS: ••• – – – ••• – – – •••

The response: •••• •– •••• •– •••• •–

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 17 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Morse decoding tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

E

I

S

H V

U

F Ü

•

A

R

L Ä

W

P J

–

•

T

N

D

B X

K

C Y

•

M

G

Z Q

O

Ö

–

–

SOSOS: ••• – – – ••• – – – •••
The response: •••• •– •••• •– •••• •–

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 17 / 21



Binary trees Def SearchTree Traversal Deleting Applications

Evaluating mathematical expressions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

*

+

2 4

+

3 1

xpr

Storing math expressions in a tree
Leaves → numeric constants
Branches → two-operand operators
In the example: (2+ 4) ∗ (3+ 1)

1 int eval(tree_ptr xpr)
2 {
3 char c = xpr ->data;
4 if (isdigit(c)) /* stopping condition */
5 return c - ’0’;
6 if (c == ’+’)
7 return eval(xpr ->left) + eval(xpr ->right );
8 if (c == ’*’)
9 return eval(xpr ->left) * eval(xpr ->right );

10 } link

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 18 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/expression.c


Binary trees Def SearchTree Traversal Deleting Applications

Evaluating mathematical expressions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

*

+

2 4

+

3 1

xpr

Storing math expressions in a tree
Leaves → numeric constants
Branches → two-operand operators
In the example: (2+ 4) ∗ (3+ 1)

1 int eval(tree_ptr xpr)
2 {
3 char c = xpr ->data;
4 if (isdigit(c)) /* stopping condition */
5 return c - ’0’;
6 if (c == ’+’)
7 return eval(xpr ->left) + eval(xpr ->right );
8 if (c == ’*’)
9 return eval(xpr ->left) * eval(xpr ->right );

10 } link

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 18 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/expression.c


Binary trees Def SearchTree Traversal Deleting Applications

Evaluating functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let us introduce variable x as a leaf node as well:

1 double feval(tree_ptr xpr , double x)
2 {
3 char c = xpr ->data;
4 if (isdigit(c))
5 return c - ’0’;
6 if (c == ’x’)
7 return x;
8 if (c == ’+’)
9 return feval(xpr ->left , x) + feval(xpr ->right , x);

10 if (c == ’*’)
11 return feval(xpr ->left , x) * feval(xpr ->right , x);
12 } link

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 19 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/expression.c


Binary trees Def SearchTree Traversal Deleting Applications

Evaluating the derivative of a function DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let us take the derivative of the function! The rules are:
c ′ = 0
x ′ = 1
(f + g)′ = f ′ + g ′

(f · g)′ = f ′ · g + f · g ′

1 double deval(tree_ptr xpr , double x)
2 {
3 char c = xpr ->data;
4 if (isdigit(c)) /* stopping condition */
5 return 0.0;
6 if (c == ’x’) /* stopping condition */
7 return 1.0;
8 if (c == ’+’)
9 return deval(xpr ->left , x) + deval(xpr ->right , x);

10 if (c == ’*’)
11 return deval(xpr ->left , x) * feval(xpr ->right , x) +
12 feval(xpr ->left , x) * deval(xpr ->right , x);
13 } link

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 20 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/expression.c


Binary trees Def SearchTree Traversal Deleting Applications

Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 21 / 21


	Binary trees
	Definition
	Binary search trees
	Traversal
	Deleting
	Further applications


