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Trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

root

K = 1 (linked list)

root

K = 2 (binary tree)

An acyclic graph
Every node has exactly one incoming edge
K -ary tree: every node has at most K outgoing edges
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Binary trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

root

Declaration of the binary tree data structure
1 typedef struct tree {
2 int data;
3 struct tree *left , *right;
4 } tree_elem , *tree_ptr; link

Typically we typedef not only the struct, but also the pointer
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Binary search trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

31

root

3131 2525 2828 4242 1212 3535 1111 4848 3030 3333 2626

Sub-tree to the left: only elements smaller than the node
Sub-tree to the right: only elements greater than the node
The structure of the tree depends on the insertion order of the
elements!
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Searching an element in the tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES
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48
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1 tree_ptr find(tree_ptr root ,
2 int data)
3 {
4 while (root != NULL &&
5 data != root ->data)
6 {
7 if (data < root ->data)
8 root = root ->left;
9 else

10 root = root ->right;
11 }
12 return root;
13 } link

This is not recursive yet
In a depth-d tree the max. number of steps is d
If the tree is balanced and has n elements ⇒≈ log2 n steps!
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In-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
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1 void inorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 inorder(root ->left);
6 printf("%d ", root ->data);
7 inorder(root ->right);
8 }

11

in-order traversal
1 left sub-tree
2 root element
3 right sub-tree

With this traversal the nodes are visited
in increasing order of their values
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In-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

An other implementation of the in-order traversal:

1 void inorder(tree_ptr root)
2 {
3 if (root ->left != NULL)
4 inorder(root ->left);
5 printf("%d ", root ->data);
6 if (root ->right != NULL)
7 inorder(root ->right);
8 }

But in this case the caller has not make sure that root != NULL
holds
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Pre-order traversal DEPARTMENT OF
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1 void preorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 printf("%d ", root ->data);
6 preorder(root ->left);
7 preorder(root ->right);
8 }

31

pre-order traversal
1 root element
2 left sub-tree
3 right sub-tree

Saving the elements of the tree in this
order, and building it again, the
structure of the tree can be fully
reconstructed.
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Building a tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Inserting a new node to the tree
1 tree_ptr insert(tree_ptr root , int data)
2 {
3 if (root == NULL) {
4 root = (tree_ptr)malloc(sizeof(tree_elem ));
5 root ->data = data;
6 }
7 else if (data < root ->data)
8 root ->left = insert(root ->left , data);
9 else

10 root ->right = insert(root ->right , data);
11 return root;
12 } link

Usage of this function:
1 tree_ptr root = NULL;
2 root = insert(root , 2);
3 root = insert(root , 8);
4 ...

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 11 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

Building a tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Inserting a new node to the tree
1 tree_ptr insert(tree_ptr root , int data)
2 {
3 if (root == NULL) {
4 root = (tree_ptr)malloc(sizeof(tree_elem ));
5 root ->data = data;
6 }
7 else if (data < root ->data)
8 root ->left = insert(root ->left , data);
9 else

10 root ->right = insert(root ->right , data);
11 return root;
12 } link

Usage of this function:
1 tree_ptr root = NULL;
2 root = insert(root , 2);
3 root = insert(root , 8);
4 ...

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 11 / 21

http://www.hit.bme.hu/~ghorvath/bop/lectures/Lect10/src/bintree.c


Binary trees Def SearchTree Traversal Deleting Applications

Post-order traversal DEPARTMENT OF
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1 void postorder(tree_ptr root)
2 {
3 if (root == NULL)
4 return;
5 postorder(root ->left);
6 postorder(root ->right);
7 printf("%d ", root ->data);
8 }

31

post-order traversal
1 left sub-tree
2 right sub-tree
3 root element

In this order the leaves of the tree are
visited first → application:
releasing/deleting a tree
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Deleting a tree by post-order traversal DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

1 void delete(tree_ptr root)
2 {
3 if (root == NULL) /* empty tree: nothing to delete */
4 return;
5 delete(root ->left); /* post -order traversal */
6 delete(root ->right);
7 free(root);
8 } link

A program segment (without memory leaks):

1 tree_ptr root = NULL;
2 root = insert(root , 2);
3 root = insert(root , 8);
4 ...
5 delete(root);
6 root = NULL;
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Simple algorithms on binary trees DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Write a recursive function (max. 10 lines), that

determines the depth of a tree
calculates the count / the sum / the average of the values
stored in the nodes of the tree

Write a iterative function (max. 10 lines), that

computes the minimum and the maximum of the values stored
in the nodes
returns the pointer to the node storing the maximal / minimal
value of the tree
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Deleting an element from a search tree – naively DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES
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The right sub-tree is moved to the place of the deleted node
The left sub-tree is inserted to below the minimal element of
the right sub-tree

The tree is getting imbalanced!
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Deleting an element from a search tree – clever DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES
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The minimal element of the right sub-tree is moved to the
place of the deleted node
This element could have only a right sub-tree, it is moved one
level up, to its old place
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Morse decoding tree DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES
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The response: •••• •– •••• •– •••• •–
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Evaluating mathematical expressions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES
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xpr

Storing math expressions in a tree
Leaves → numeric constants
Branches → two-operand operators
In the example: (2+ 4) ∗ (3+ 1)

1 int eval(tree_ptr xpr)
2 {
3 char c = xpr ->data;
4 if (isdigit(c)) /* stopping condition */
5 return c - ’0’;
6 if (c == ’+’)
7 return eval(xpr ->left) + eval(xpr ->right );
8 if (c == ’*’)
9 return eval(xpr ->left) * eval(xpr ->right );

10 } link
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Evaluating functions DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let us introduce variable x as a leaf node as well:

1 double feval(tree_ptr xpr , double x)
2 {
3 char c = xpr ->data;
4 if (isdigit(c))
5 return c - ’0’;
6 if (c == ’x’)
7 return x;
8 if (c == ’+’)
9 return feval(xpr ->left , x) + feval(xpr ->right , x);

10 if (c == ’*’)
11 return feval(xpr ->left , x) * feval(xpr ->right , x);
12 } link
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Evaluating the derivative of a function DEPARTMENT OF
NETWORKED SYSTEMS
AND SERVICES

Let us take the derivative of the function! The rules are:
c ′ = 0
x ′ = 1
(f + g)′ = f ′ + g ′

(f · g)′ = f ′ · g + f · g ′

1 double deval(tree_ptr xpr , double x)
2 {
3 char c = xpr ->data;
4 if (isdigit(c)) /* stopping condition */
5 return 0.0;
6 if (c == ’x’) /* stopping condition */
7 return 1.0;
8 if (c == ’+’)
9 return deval(xpr ->left , x) + deval(xpr ->right , x);

10 if (c == ’*’)
11 return deval(xpr ->left , x) * feval(xpr ->right , x) +
12 feval(xpr ->left , x) * deval(xpr ->right , x);
13 } link
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Thank you for your attention.

© based on slides by Zsóka, Fiala, Vitéz Binary trees 2 December, 2020 21 / 21


	Binary trees
	Definition
	Binary search trees
	Traversal
	Deleting
	Further applications


