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Abstract—In this paper we present a new, direct computational

method for calculating the complex thermal transfer impedances

between two separate locations of a given physical structure

aimed at the implementation into a field-solver based on the

SUNRED (SUccessive Node REDuction) algorithm. We tested the

method with a simple 2D example containing 125 internal nodes.

For testing the proposed new calculation method multiple combi-

nations of Dirichlet and Neumann type boundary conditions were

applied. Also, different types of thermal loads such as prescribed

unit-step change in dissipation or temperature were assumed (for

time domain transient analysis). The test case was also studied

with the assumption of sinusoidal dissipation. Results obtained

by the proposed new calculation method and results obtained by

conventional simulations differ less than the uncertainty of the

traditional solution method. The good agreement enables us to

use the balanced truncation method to reduce the order of the

transfer functions with low computational cost.

Index Terms—compact thermal modeling, thermal transfer

functions, node reduction

Nomenclature

A Surface area i [m2]
c

V

Volumetric specific heat [J/m3
K]

C Specific heat for a cell [J/K]
" Resolution of the model [m]
G

Th

Thermal conductance [W/K]
I

Th

, P Nodal heat flow [W ]
� Thermal conductivity [W/m ·K]
q̇

0 Heat generation rate [W/m

3]
⇢ Density [kg/m3]
T Temperature or nodal temperature [K]
t Time [s]
dt Time-step [s]
Y Admittance matrix

I. INTRODUCTION

We face a growing interest in more accurate thermal mod-
eling of electronic parts, such as ICs, discrete power semicon-
ductor devices and Light-Emitting Diode (LED) devices. In
the past two decades the need for higher speed of numerical
simulations and the fact that semiconductor vendors do not
want to share proprietary information about their advanced
packaging solution resulted in the development of compact
thermal models of the packages of electronic components.
In his 2008 paper [1] C. Lasance provided an overview
of the state of the art. From the known methods of that
time the DELPHI model topology and modeling methodology
became even an industry standard [2]. The DELPHI compact

modeling methodology uses a global optimization method to
find the network element values of the DELPHI model of
an IC package which fit the best the simulation results for
a great variate of different thermal boundary conditions. Since
then many new compact modeling methods were developed,
including the recent results of L. Codecasa et al [3], [4]
and other, reduced order modeling based methods. The order
reduction process can be based on projection (as described
e.g. in [5]), or elimination of nodes – a method also used in
field-solvers such as our in-house, proprietary tool SUNRED
(see e.g. [6]).
A particularly effective projection based model can be derived
with the so-called multi-point moment matching technique,
which solves the projection in the complex frequency domain
[3]. Despite the effectiveness of the moment matching, the
results are influenced by the chosen points to match the
moments. Another question is the robustness and stability of
the algorithms, however the novel developments solve these
problems [7]. The desirable solution in our opinion would be
a balanced reduction based algorithm, but the computational
cost of such an algorithm is high o(n3) against the cost of
moment matching algorithm o(n)–o(n2)
The goal of this paper to describe how would the advantages
of the SUNRED method can be united with the use of transfer
impedances resulting in a new considerably effective method
based on balanced reduction. This new method uses the
matrix-operations of the SUNRED algorithm and it is applied
to an algebraic equation-system obtained by the Laplace-
transform of the original discretized system. During the model
building the reduction of the order of the transfer impedances
is done, therefore the degree of freedom (n) can be held low
in each step of the reduction.

II. MODELING

A. The SUNRED algorithm

The SUNRED algorithm is centered around the admittance

matrix of the electrical equivalent circuit derived from the
spatially discretized form of thermal diffusion equation [6],
[8] in 2D:
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This algebraic equation system for the time domain propaga-
tion can be written as a matrix-equation:

T (t+ dt) = T (t) + dt · Y T (2)

The elements of the matrix can be expressed with the help of
the thermal conductance:
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The admittance matrix can be written as (in 2D):
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where G

Th

appears in the ith row jth column, if the node
at (x, y) coordinate, which belongs to the row i in the
matrix, is connected to another node (i.e. x, y � 1) which is
represented by column j. The other elements of the matrix
are zero indicating the lack of direct connection between the
represented nodes. This matrix can be used to determine the
heat fluxes between nodes by applying Kirchhoff’s laws:

I
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= Y T + I
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(5)

where I

Th

T and I

gen

are vectors with N element that
represent each node. The steady-state thermal solution can be
derived from Eq. (5) with the assumption of I

Th

= 0:
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The order of the admittance matrix can be reduced by
merging the neighboring nodes with the so-called successive
node reduction (SUNRED) algorithm, which is an algebraic
form of the Y-� transformation, and so that can be applied
not just for resistive network, but for a network with complex
impedances.

To show the steps of the SUNRED algorithm we chose a
simple building block with four external and one internal node
as in Figure 1. The admittance matrix of such a block can be
written as:

Y =

0

@
�GTh 0 0 0 GTh

0 �GTh 0 0 GTh
0 0 �GTh 0 GTh
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that also represents one of the four building blocks in Figure
2. The rows and columns of 1–4 represent the connections
of the nodes on the side of the rectangle, while the fifth
row and column represents the central node’s connections
of a standalone building block. Now we established all the
connections for the central node (that won’t connect to more
nodes), therefore it can be eliminated. The elimination process:

Y
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= Y
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� Y
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Y
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(8)

where Y
red

is the reduced admittance matrix, Y
out

is the matrix
of the connections only from the maintained nodes (in the

Figure 1: SUNRED algorithm a) 3D rectangular field b)
SUNRED version of Finite Differences model in 2D b) The
model after the first node reduction step (elimination of the
internal nodes of the first level cells) [9]

Figure 2: Four two dimensional building blocks in a network

example the rows and columns form 1 to 4), Y
in�out

contains
the connection between the inner and outer nodes (fifth row
1–4 columns), as the Y

out�in

(fifth column 1–4 rows) and Y

in

stands for the inner node connections (fifth column and row).
Therefore, the reduced matrix of the building block becomes:

Y

red

=
G

Th

4

✓�3 1 1 1
1 �3 1 1
1 1 �3 1
1 1 1 �3

◆
(9)

The connection between the building blocks can be established
by merging the common nodes’ rows and columns.

In case of transient simulation, the capacitors representing
the thermal capacitance of a grid cell are replaced with
their time-discretized resistive equivalent corresponding to the
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Figure 3: The time discredited resistive equivalent of a capac-
itor (for the time-domain numerical integration scheme based
on the reverse Euler method

actual time-domain numerical solution method. Basically, such
an equivalent represents a capacitor with a resistor and with
a ”current” source. In case of thermal capacitance the source
value is equal to the heat-flux resulting from the change of the
thermal energy stored in the volume of material represented
by the simulation grid cell during the given simulation time
interval �t simulation time-step (see Figure 3) therefore the
whole temperature-map must be recalculated for the subse-
quent simulation time-steps.

III. SUNRED ALGORITHM WITH TRANSFER FUNCTIONS
REPRESENTING THERMAL TRANSFER IMPEDANCES

With the Laplace transform of Eq.:(1) the SUNRED algo-
rithm can also be formulated for the system behavior in the
complex frequency (s) domain as follows:
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This means that the admittance matrix itself depends on the
complex frequency s (in the Laplace domain), therefore the
building blocks need to be modified as follows:
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where C stands for the thermal capacitance of a whole block,
as shown in Figure 4. The reduction algorithm is the same as
outlined above, therefore the reduced building block can be
represented with the following equation:
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Merging the nodes between blocks and the standard node
elimination of the successive node reduction method require
the same algebraic operation as in the ordinary SUNRED
algorithm [10]. The only difference is that now one has to
cope with transfer functions. We can appoint some nodes that
will not be eliminated and so we can prescribe the value of the
heat flux through such a node or we can prescribe temperature
of such nodes. Following the terminology introduced by D.
Schweitzer [11], [12]. Let us call such nodes as driving points

and/or monitoring points. When a node is a driving point it

Figure 4: Four two dimensional building blocks with capacitor
in a network

represent a time variant heat dissipating element (In a network
diagram representing the discretized model such a node is
driven by a ”current source”). Monitoring points are locations
where we would like to know the e.g. the time evolution of the
temperature while the state of other such nodes is changing.
A node can be both a driving point and a monitoring point.
The number of driving points in a system is equal to the
number of elementary heat-sources we have in the system.
Since any location in the system can be a monitoring point,
in a general case the number of monitoring points can be
greater or equal to the number of driving points [12]. When
the reduction process ends the admittance matrix is an n times
n matrix of transfer functions. These transfer functions repre-
sent the propagation properties between pairs of driving and
monitoring points. To extend the terminology to the transfer
functions, the node at the ”input” side is called driving point
(regardless if it is really driven by a heat-source), the node at
the ”output” side is a monitoring point. Because of the new
non-numerical parameter (s) in the node reduction process,
the thermal resistances and capacitances can also be handled
symbolically. In other words, a symbolic transfer function can
be created which represents the thermal transfer impedance
between two selected nodes of the discretized model of the
physical structure (geometry, set of boundary conditions) –
changes in materials can be easily applied through changing
the resistance and capacitance values accordingly, without
the need of performing the time-consuming node reduction
algorithm again.

The most significant difference between the original
SUNRED algorithm and the proposed algorithm is that the
latter is not another reduction method, which makes the
simulation faster, but a node-reduction method, which gives
the relation between the monitoring and driving points. The
transfer function between the nodes gives us all of the possible
information at once and it is independent from applied heat
on the driving points. As we will show in the next paragraph
we can set up parametric material properties, which shows that
the given parametric transfer function contains the information
from the geometry.
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IV. PROTOTYPE IMPLEMENTATION AND TESTING

A. Simulation setups

The calculation described in the previous subsection was im-
plemented in Matlab 2014 with the help of Matlab’s symbolic
toolbox. The test setup contained 25 building blocks, and 125
nodes. Homogenous material distribution was assumed in the
simulated physical domain. The new transfer impedance cal-
culation method implemented in the SUNRED algorithm was
compared with the time-domain thermal transfer impedance
functions obtained the standard thermal transient simulation
method of the conventional SUNRED solver. In both cases
the same geometry and the same sets of boundary conditions
were applied. The simulated test structure is shown in Figure
5.

B. Results

The model error was investigated by comparing the results
on a simple test case (Figure 5) for both a traditional method,
and the new method in case of different excitations applied at
an arbitrary node of the structure. The applied thermal loads
(excitations) were:

• forced step-wise heat-flux,
• forced, step-wise temperature rise,
• forced, time dependent heat-flux (with sinusoidal wave-

form).
The results obtained by our new calculation method are
assumed to theoretically accurate (loaded only with numerical
noise due to the finite precision of the representation of
floating point numbers) as they are analytically calculated,
therefore when we compared them with the results obtained
by a conventional SUNRED simulation they were considered
as base-line. In case of transient simulation of the conventional
SUNRED solver which is based on an Euler-type numerical in-
tegration scheme, the inherent numerical error is proportional
with the applied �t simulation time step.

C. Error of the Euler method

The difference between the traditional and new method was
investigated on the simple geometry described above. After the
node reduction process only two monitoring nodes remained
which were originally connected to the two transverse corners
of the simulated rectangular area (see Figure 5). The boundary
condition settings were the following:

• Dirichlet-type conditions with 0oC applied at the elimi-
nated nodes

• and Neumann-type conditions for the monitoring nodes
with ±1 W heat flux,

as it is shown in Figure 5 (a). The transient simulation results
with different time-steps are shown in Figure 6. The error
can be calculated as the average of the absolute value of the
relative difference:
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)� T
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)

T
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(t
i

)
(13)

The results are summarized in Table I. As it is visible the
error is linearly decreasing with the size of the �t time-step
– corresponding to our initial assumptions.

In the second test case the same structure was simulated
as before, but with 0 W Neumann-type boundary condition
as shown in Figure 5. (b). The result are presented in Figure
7. The size of the time-step of the time domain integration
of the classical SUNRED solver was 10�7 s. In the third
example temperature step excitation was applied on one of
the free nodes, and the temperature change on the other node
as a response was recorded, as illustrated in Figure 5. (c). The
obtained results are shown in Figure 8.

In the fourth test case a sinusoidal excitation was applied
(see Figure 5 (d)). In (Figure 9), we show the Bode-diagram
representation of the transfer impedance, obtained by both
methods. We chose a frequency with low attenuation (! =
100) and a higher frequency for higher attenuation (! = 105).
The results are shown in Figure 10 for low frequency and
in Figure 11 for high frequency behavior. One can see that
on high frequencies the system damping cause an averaging
behavior, while in lower frequencies the the transposition is
shape-trusty. These results shows that the SUNRED algorithm
is adaptable for calculating the complex transfer impedances
between far nodes of a grid. We have to note that the new
reduction scheme is applied only once for all of the cases
above, while the original SUNRED algorithm had to be
applied for each case. Calculating the transfer functions lasted
for 14 seconds on a 3.2 GHz CPU, while solve one case with
the original SUNRED algorithm lasted less than a millisecond.
That is a huge difference, but if the ability of parametrization,
and the number of runs taken into consideration the new
method can be competitive with the original algorithm.

D. Order reduction

The most disadvantage of the presented method is the huge
runtime. To overcome this problem, we propose to use order
reducing algorithm in complex frequency space in each step
of building the model. That means the order reduction in
each connection step and after each node-reduction step. The
algorithm of balanced reduction can be found in the literature
[13]. In that way, the balanced reduction is done only on low
order systems (less than 20), therefore the computational cost
is always low. While the model is being built up, only the

Time-step (s) Error (x10�5)

10�5 930
5 · 10�6 460
2 · 10�6 180
10�6 89
10�7 7.9
10�8 0.9
10�9 0.09
10�10 0.009

Table I: Effect of the size of time-step on the error
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Figure 5: Boundary conditions for different simulations

surficial nodes behave as monitoring nodes, therefore the size
of the admittance matrix is proportional to the number of nodes
on the surface. In 2D we assume that the computational cost
is proportional to n

2, because the surface is proportional to n,
and the cost of the matrix operations are proportional to n

2.
For the sake of simplicity we examined the former structure of
rectangle with more nodes inside. The measured runtimes are
summarized in Table II. with the used balanced truncation to
6th order of transfer functions. These runtimes are the worst-
case results, because of the used square shaped field. The

Figure 6: The effect of changing the time-step

Figure 7: Results for Neumann boundary condition (b)

Figure 8: Results for Dirichlet boundary condition (c)

Number of nodes (n) Runtime (s)

320 1

1280 1.3

5120 1.6

20480 2.1

81920 3.5

327680 8.5
1310720 28

5242880 103

20971520 258

Table II: Runtime versus number of nodes with balanced
reduction of 2D square shaped structure
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Figure 9: The bode plot of the system (d)

Figure 10: System simulation results for ! = 100

Figure 11: System simulation results for ! = 105

implementation was done by Matlab 2016b, with the help of
balred() function. The runtimes shows that the computational
cost increasing near linearly, which is a consequence of the 2D
modeling. That indicates that the new method will be highly
effective on flat structures, such as LEDs.

V. CONCLUSION

We proposed a new modeling method that can be considered
as an analytic compact model of thermal transfer impedances.
The new modeling method is accurate, parametric and bound-

ary independent. For four different simple test cases the
results obtained by the proposed method were compared to the
results obtained by a conventional SUNRED algorithm based
thermal simulation code. The reduction scheme is naturally
time-consuming, in our test case it was 14 seconds, which
is at least 1000 times higher that the original SUNRED
algorithms runtime. To reduce the runtimes we propose to
apply the traditionally time-consuming balanced reduction
method with considerably low cost of computation because
with the SUNRED method the order of the transfer functions
remains low during the reduction process.

VI. ACKNOWLEDGEMENT

The contribution of the European Union for supporting
this study in the context of the H2020 ECSEL Joint Under-
taking program (2016-2019) within the frames of the Del-
phi4LED project (grant agreement 692465) is acknowledged.
Co-financing of the Delphi4LED project by the Hungarian
government through the NEMZ_15-1-2016-0033 grant of the
National Research, Development and Innovation Fund is also
acknowledged.

REFERENCES

[1] C. J. M. Lasance, “Ten Years of Boundary-Condition-Independent Com-
pact Thermal Modeling of Electronic Parts: A Review,” Heat Transfer
Engineering, vol. 29, pp. 149–168, feb 2008.

[2] JEDEC JESD15 Standard, “Methodology for the Thermal Modeling of
Component Packages,” 2008.

[3] L. Codecasa, “Nonlinear dynamic compact thermal models by structure-
preserving projection,” Microelectronics Journal, vol. 45, pp. 1764–
1769, dec 2014.

[4] L. Codecasa, A. Magnani, N. Rinaldi, et al., “Structure-preserving
approach to multi-port dynamic compact models of nonlinear heat
conduction,” Microelectronics Journal, vol. 46, pp. 1129–1137, dec
2015.

[5] L. Codecasa, “Compact Models of Dynamic Thermal Networks with
Many Heat Sources,” IEEE Transactions on Components and Packaging
Technologies, vol. 30, pp. 653–659, dec 2007.

[6] Z. Kohári, V. Székely, M. Rencz, A. Páhl, V. Dudek, and B. Höfflinger,
“Studies on the heat removal features of stacked SOI structures with a
dedicated field solver program (SUNRED),” Microelectronics Reliabil-
ity, vol. 38, pp. 1881–1891, dec 1998.

[7] P. Benner and L. Feng, “A robust algorithm for parametric model
order reduction based on implicit moment matching,” in Reduced Order
Methods for Modeling and Computational Reduction, pp. 159–185,
Springer International Publishing, 2014.

[8] A. Páhi, V. Székely, M. Rosenthal, and M. Rencz, “3D extension of the
SUNRED field solver,” in 1998 4th International Workshop on Thermal
Investigations of ICs and Systems (THERMINIC), pp. 185–190, 1998.

[9] L. Pohl, “Multithreading and Strassen’s algorithms in SUNRED field
solver,” in 2008 14th International Workshop on Thermal Inveatigation
of ICs and Systems (THERMINIC), sep 2008.

[10] M. Nemeth, L. Jani, and A. Poppe, “Compact modeling approach
for microchannel cooling aimed at high-level thermal analysis of 3D
packaged ICs,” in 2016 Symposium on Design, Test, Integration and
Packaging of MEMS/MOEMS (DTIP), may 2016.

[11] D. Schweitzer, “Generation of multisource dynamic compact thermal
models by RC-network optimization,” in 29th IEEE Semiconductor
Thermal Measurement and Management Symposium (SEMI-THERM),
mar 2013.

[12] D. Schweitzer, F. Ender, G. Hantos, and P. G. Szabó, “Thermal
transient characterization of semiconductor devices with multiple heat
sources—Fundamentals for a new thermal standard,” Microelectronics
Journal, vol. 46, pp. 174–182, feb 2015.

[13] N. Lang, J. Saak, and T. Stykel, “Balanced truncation model reduction
for linear time-varying systems,” Mathematical and Computer Modelling
of Dynamical Systems, vol. 22, pp. 267–281, jun 2016.

!

!

39




